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0Abstract
Robotics systems are complex component-based systems, which can consist of many interacting com-

ponents. When composing and evolving complex component-based systems, the resulting behavior of

component interactions sometimes differs from the developers’ expectations. This can, for example,

manifest itself in components indefinitely waiting for a required message that no other component sends,

components reaching a deadlock state, or messages getting ignored due to systems being in an incorrect

state. These bugs, which we call behavioral architecture composition bugs, are often hard to find, because

the fault locations are spread throughout many different locations in the system.

Model-based analysis is a common technique to identify incorrect behavioral composition of complex,

safety-critical systems, such as robotics systems. However, in practice, robotics companies usually do

not have any formal models, as models for hundreds of software components is a very costly and often

labor-intensive and error-prone process. Behavioral models, which would need to be updated whenever

the behavior of the component changes, are especially expensive to create.

In this thesis proposal, I present an approach to automatically infer behavioral models for components

of systems based on the Robot Operating System (ROS), the most popular framework for robotics systems,

using a combination of static and dynamic analysis by exploiting assumptions about the usage of the

ROS framework Application Programming Interface (API) and behavioral idioms. Static analysis looks

for architecturally-relevant API calls that implement message sending, handing received messages,

sleeping for a periodic interval, and behavioral idioms that implement state-dependent behavior and

state transitions. Based on this information, static analysis infers state machine models of architecturally-

relevant component behavior. Due to limitations of static analysis, the resulting models are often partial.

To complete statically inferred models, I propose to instrument the source locations of known unknowns

and dynamically observe their values. Then, resulting models will be translated into the common language

TLA+/PlusCal used for model-checking. Furthermore, I propose a model-based analysis technique to

find architecture-misconfiguration bugs in the resulting TLA+ models. Finally, I propose an end-to-end

evaluation that measures the effectiveness and practicality of these contributions.

This work is a contribution towards making well-proven and powerful but infrequently used methods

of model-based analysis more accessible and economical in practice to make robotics systems more

reliable and safe.
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Context





1 Introduction

Ensuring that robotics systems operate safely and correctly is an important challenge in software en-

gineering. As robots are becoming increasingly integrated in work environments and the daily lives

of many people [43, 59, 85, 36] their faults can potentially cause dramatic harm to people [8, 41, 84].

However, ensuring that robotics systems are safe and operate correctly is hindered by their large size

and complexity [50, 62, 1, 2]. Many robotics systems are comprised of hundreds of thousands of lines or

millions of lines of code [82].

Robotics systems, especially systems written for the Robot Operating System (ROS) [73], the most

popular robotics framework, are often component-based, i.e., are implemented as independently deployable

run-time units that communicate with each other primarily via messages [3, 44, 19, 73, 82]. They can be

comprised of hundreds of software components, each of which can have complex behavior [14, 52, 82].

Many ROS systems are predominantly composed of reusable component implementations created by

external developers [49]. In this context, the main challenge is their correct composition [82, 20].

The composition and evolution of software components is error-prone, since components regularly

make undocumented assumptions about their environment, such as receiving a set of initialization

messages before starting operation. When composed inconsistently, the behavior of these systems can

be unexpected, such as a component indefinitely waiting, not changing to the desired state, ignoring

inputs, message loss, or publishing messages at an unexpectedly high frequency [34, 20, 83]. In this

thesis proposal we call these bugs “behavioral architectural composition bugs”, because they are caused

by inconsistent compositions and impact the software architecture’s behavior. Finding and debugging

behavioral architectural composition bugs in robotics systems is usually challenging, because components

frequently fail silently and failures can propagate through the system [50, 38, 1, 2].

Software architects commonly use model-based architecture analysis to ensure the safety and correct

composition of components [25, 18, 67, 68, 86, 58, 7, 39]. Model-based analysis is a design-time technique to

evaluate whether design options meet desired properties. Systems are modeled as a set of interconnected

views, such as component-connector models (describing whats components are in the system, what ports

they have, and how ports are connected between components), behavioral views (state machines or

activity diagrams describing the dynamic reaction a component can have to receiving messages at its

ports), and deployment views (mapping component instances to processing units) [22]. Using models of

interconnected views of the current system, architects can find inconsistencies or predict the impact of

changes on the system’s behavior.

However, in practice, due to the complexity of robotics systems, creating models manually is time-

consuming and difficult [86, 24, 25]. This motivates work on automated model recovery to reduce the

modeling effort and make formal analysis more accessible in practice.

Architectural recovery techniques, such as ROSDiscover [82], HAROS [76, 74], and the tool by Witte

et al. [88], can reconstruct component-connector models. Such reconstructions can be effective in finding

some bugs resulting from topic name misspellings or connectors that connect ports of different message

type. However, they do not reconstruct behavioral models. Without behavioral models model-based

analysis cannot reason about dynamic aspects that describe how the components react to inputs and how
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Chapter 1 Introduction

they produce outputs, such as whether a component sends a message in response to receiving an input,

whether it sends messages periodically or sporadically, and what state conditions or inputs determine

whether it sends a message.

Existing approaches for inferring behavioral models, such as Perfume [69], use dynamic analysis

to infer state machines from execution traces. However, these approaches cannot guarantee that the

relationships they find are causal since they observe only correlations within behavior.

To address the challenge of automatically inferring behavioral component models for ROS-based

systems, we propose to use a combination of static analysis of the system’s source code written in C++

and dynamic analysis of systematically generated execution scenarios based on results of static analysis.

In general, inferring behavioral models is undecidable [56]. Even a partial solution is practically

challenging, because the analysis needs to infer what subset of arbitrary C++ code gets compiled to

be executed as a single component, what subset of this component’s code communicates with other

components, and under what situations this code for inter-component-communication is reachable.

Fortunately, the following observations about the ROS ecosystem make this problem tractable for most

cases in practice:

1. Component architectures and behaviors are defined via Application Programming Interface (API)

calls that have well-understood architectural semantics [75].

2. The composition and configuration of components to build larger systems is done in separate

architecture configuration files (i.e., launch files). Most of these result in “quasi-static” systems.

That is, architectures rarely change following run-time initialization [75].

3. Behavioral patterns, such as periodically sending messages, are usually implemented using fea-

tures provided by the ROS framework. Hence, most instances of those patterns follow a similar

implementation pattern.

1.1 Thesis Statement

My thesis statement is:

Thesis Statement

“Assumptions about framework-specific APIs and idioms enable the automatic inference of
practically useful behavioral component models for ROS-based robotics systems.”

The terms used in this statement have the following definitions:

Assumptions about framework-specific APIs and idioms represent observations made about how

developers in the ROS ecosystem implement architecturally-relevant behavior that are true for

most cases but not necessarily all cases.

Automatic inference denotes a combination of static and dynamic analysis that requires only minimal

human intervention and relies on the availability of source code, build artifacts, and a simulated

execution environment.
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Contributions Section 1.3

Practically useful is characterized by the effectiveness to which the proposed approach can assist ROS

developers during model-based analysis tasks that are common in their domain.

Behavioral component models are formal models describing architecturally-relevant behavior of

ROS components as input-output state machines of their ports.

The thesis statement will be considered proven after I have developed a technique that infers behavioral

component models based on assumptions about framework-specific APIs and idioms and evaluated

its practical usefulness via an end-to-end evaluation on real-world ROS bugs that require behavioral

component models to be found.

1.2 Contributions

More concretely, to provide evidence for the thesis statement I propose the following main contributions:

1. A static analysis approach that infers component behavior models from ROS code by looking for

API calls of architecturally-relevant behavior and common idioms to implement common behavioral

patterns in the ROS ecosystem. This contribution has been completed already and is presented in

Chapter 5. It presents evidence towards the thesis statement by showing that assumptions about

framework-specific APIs enable the automatic inference of partial behavioral component models

for ROS-based robotics systems.

2. A dynamic analysis approach that enhances statically inferred models by designing systematic

experiments to observe the behaviors of incomplete models. More details on how this proposed

work might be implemented is described in Chapter 6. This contribution will provide further

evidence towards the thesis statement by demonstrating that framework-specific assumptions can

be used to complete partial behavioral component biased via dynamic analysis.

3. Amodel-based analysis of the resulting models that translates them into executable PlusCal/TLA+

models with a set of commonly requested analyses from the robotics domain. This proposed work

is described in Chapter 7. This contribution will provide initial evidence of the usefulness of the

inferred models by demonstrating how they can be used to automatically find bugs.

4. An end-to-end evaluation of the presented approach measuring the effectiveness of finding bugs

and the practical usefulness including a novel data set of real-world architecture misconfiguration

bugs in open source ROS systems. The completed work on the data set collection is described in

Chapter 4. The proposed work of the end-evaluation is described in Chapter 8. This contribution

will provide the final piece of evidence to prove the thesis statement by providing an empirical

validation of the practical usefulness of inferred models.

1.3 Structure of Thesis Proposal

The remainder of the thesis proposal is structured as follows:
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Chapter 1 Introduction

• Chapter 2 explains the required background on modeling and analysis of software architectures,

robotics, and ROS that is required to deeply understand the contribution of this thesis proposal and

the most closely related work.

• Chapter 3 gives a high-level overview of the presented approach to infer component-behavioral

models for ROS systems by making assumptions on the framework and ecosystem.

• Chapter 4 presents the bug data set of architecture misconfiguration bugs used for evaluation and

to demonstrate the existence and variety of architecture misconfiguration bugs.

• Chapter 5 describes our static analysis approach to infer component behavior models for ROS

systems and evaluates the accuracy of this approach to support the thesis statement for static

analysis.

• Chapter 6 outlines proposed work on using dynamic analysis complete the statically inferred

models by exploiting assumptions about the ROS framework.

• Chapter 7 proposes work to demonstrate the usefulness of the inferred models by describing domain-

specific model-based analyses that analyze properties of interest to roboticists on PlusCal/TLA+

as well as a translation from our inferred models to PlusCal/TLA+.
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2 Background and Related Work

This chapter describes the relevant background in software architecture, model-based analysis, and

robotics on which the proposed contributions rely, existing work on which we build on, and related work

that solves similar problems in different ways.

2.1 Views in Software Architecture

This section explains the background on architectural views that is needed to understand the differences

between module views, component-connector views, dynamic views, and deployment views.

Software architectures are usually represented as a set of views that describe different high-level

aspects of the system.

2.1.1 Module View

The module view, also known as code view, displays the software the way programmers interact with

the source code. It contains source code elements, such as packages, classes, methods, or data entries

and their relationships, such as “is part of”, “uses”, or “contains”. Hence, it shows the composition of a

software into structural implementation units and can be visualized as Unified Modeling Language (UML)

class diagrams, package diagrams, or other notations. It is often used to reason about concerns such as

modularity, testability, or the location of a piece of code in the context of the high-level architecture.

To correctly reconstruct a module view an automated architectural recovery approach only needs to

look at the source code of a system.

2.1.2 Component-Connector View

The component-connector view, also known as run-time architecture, represents a structural configuration

of the architecture at run time.

It contains execution units known as components, such as processes, objects, or data stores and their

interaction channels known as connectors, such as pipes, publish-subscribe, or call-return.

Hence, it shows a configuration of the architecture at run time. It is often used to reason about quality

attributes such as performance, availability, or the correctness of a system configuration.

To correctly reconstruct a component-connector view of a system an architectural recovery technique

usually needs to look at the executables generated by the compiler or needs to make specific assumptions

on the development framework and architectural styles used to generate the software.

In this thesis proposal, the term component refers to executable run-time elements, not code modules.

2.1.3 Behavioral View

The behavioral view, also known as dynamic view, expresses the behavior of the system or its parts. It

can describe input-output relationships for components, states, state transitions, actions. Hence, it shows
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Chapter 2 Background and Related Work

how the components react to inputs. It is often used to reason about concerns such as deadlock freedom,

liveness properties, and safety properties.

To correctly reconstruct a behavioral view an automated architectural recovery approach needs to

reason about run-time properties of the system.

2.2 Architectural Styles

This section describes common architectural styles in a non-ROS-specific way.

2.2.1 Publish-Subscribe

Publish-subscribe is an architectural style for asynchronous message sending that loosely couples senders

(i.e., publishers) from receivers (i.e., subscribers) via a known intermediary interface (i.e., publish-subscribe
connector) that functions as a layer of indirection.
After subscribing to a message type, a connector is added between the subscriber and all publishers

of the corresponding message type and the subscriber starts to receive the messages whenever any

corresponding publisher sends them. Depending on the implementation or configuration, subscribers

also receive all messages previously published at the message type. Unsubscribing removes the connector

to the corresponding subscriber.

Publish-subscribe is intended to allow for dynamic reconfiguration of the architecture during run

time or reduction of syntactic dependencies between component implementations to increase reusability,

changeability, and extensibility. However, due to the late binding of the connector at run time, the

use of publish-subscribe for use cases that do not require reconfiguration during run time can suffer

from architecture misconfiguration bugs. Publish-subscribe can also increase the latency of message

delivery, reduce the certainty of delivery times when scaling vertically, and result in race conditions due

to uncertain message ordering.

2.3 Robotics Systems

Robotics systems are complex, component-based cyber-physical systems. They often involve processing

sensor data (perception), periodically analyzing the current situation in which the robot is to create actions

(planning), and translating actions into actuator commands (control). Due to the nature of the domain,

having multiple components that process and produce data of the same type, they often predominantly use

publish-subscribe connectors for the benefits on flexibility and loose coupling. The flexible architecture,

complexity of the domain, and complexity of the implementation often results in hard-to find bugs.

Static analysis and formal model-based analysis have been used to automatically find bugs in robot

systems before [4, 58, 7, 39, 71]. For example, the systems Phriky [70], Phys [46], and Physframe [45] use

type checking to find inconsistencies in assignments based on physical units or 3D transformations in

ROS code.

Furthermore, Swarmbug [42] finds configuration bugs in robot systems that result from misconfigured

algorithmic parameters, causing the system to behave unexpectedly.

These approaches focus on the analysis of bugs that result from coding errors that are localized in a
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The Robot Operating System (ROS) Section 2.4

few places of the system. In contrast, our work aims to reconstruct models that can be used to identify

incorrect composition or connection of components and therefore focus on architectural bugs.

2.4 The Robot Operating System (ROS)

ROS is the most popular open-source framework for component-based robotics systems. ROS has been

deployed to a diversity of robots, including autonomous vehicles, mobile manipulators, underwater

systems, and humanoids
1
in environments ranging from industrial warehouses to the International Space

Station [60, 9].

To increase the reusability of the more than 7 400
2
software packages in the ROS ecosystem, ROS uses

configuration mechanisms and connectors that are not bound during compile time but rather during run

time [27]. These mechanisms include string-based identifiers for topics, services, actions, and parameters,

as well as remappings between these identifiers [75].

A reference of the architecturally-relevant API calls is described in Appendix A.

2.4.1 Components in ROS

Components in ROS are called nodes. They can be defined and named via there ros::init API call. In

ROS 1 each node runs in its own process. A special kind of node, called a nodelet, are nodes that run
within the process of a parent node.

2.4.2 Connectors in ROS

ROS implements variants of the architectural styles presented in Section 2.2.

Topics Implement a Publish-Subscribe Style

Topics implement a publish-subscribe style providing asynchronous message-based, multi-endpoint

communication between nodes. Nodes subscribe to topics using the string-representation of their name

and name space. Then they receive any data published to the subscribed topics. There can be multiple

publishers and subscribers for a topic. Topics are the main form of communication between nodes in

ROS, and are used for periodic information (e.g., sensor data or positions) or sporadic requests, such as

turning off a motor.

Services Implement a Synchronous Call-Return Style

Services implement a synchronous call-return style of communication between nodes. Nodes attempting

to call a service look up the service provider in a registry based on the string-based name of the service.

Due to the synchronous blocking behavior, services are intended for short queries, such as the state of a

node or short mathematical computation.

1 https://robots.ros.org [Date Accessed: 18th August 2021]

2 https://index.ros.org/stats/ [Date Accessed: 3th May 2023]
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Chapter 2 Background and Related Work

Actions Implement an Asynchronous Call-Return Style

Actions implement an asynchronous call-return style for long-lived requests to be performed by another

node. Nodes submit goals to other nodes (such as navigating to a particular location), and can register

callbacks to keep apprised of feedback, and results. In ROS 1, actions are implemented as a library that

uses the other two communication mechanisms.

2.5 Model-based Analyses

Software architects commonly use model-based architecture analysis to ensure the safety and correct

composition of software components [3, 18, 67, 68, 86, 58, 7, 39]. Model-based analysis is a design-

time technique to evaluate whether designs meet desired properties. Systems are modeled as a set of

interconnected views, such as behavioral views (e.g., state machines or activity diagrams), and component-

connector views, and deployment views [22]. Based on models of the current architecture of the system,

software architects can find architectural inconsistencies or model changes to predict their impact on the

system’s behavior.

There has been a large amount of work on model-based analysis of software architectures based on

component-connector models [51, 10, 11, 13, 81, 15, 48] and state machines [54, 33, 30, 5]. Since the models

we infer follow the same format, our approach makes analyses like these more accessible to developers

by reducing the effort to create the models.

2.6 Inference of Module Views

Most approaches for static recovery of software architectures reconstruct structural views of software

modules from the perspective of a developer [78, 72, 12, 37, 26, 61, 64, 63, 6, 23, 29, 21]. The results from

these approaches can be used to show architects the relative location of a piece of code in the module

view of the architecture and ensure the consistency of dependencies [35, 80, 31]. Since module views

present the the code before compilation, they cannot show the relationships of components during run

time [22].

2.7 Inference of Component-Connector Models

ROSDiscover [82], HAROS [76, 74], and the tool byWitte et al. [88] can reconstruct component-connector

models for robotics systems. Component-connector models describe the types of inputs that a component

receives, the types of outputs it produces, and to what other components their input and output ports are

connected to. However, component-connector models do not contain information about how a component

reacts to inputs (e.g., what kind of output it produces in response to an input), whether an output port

is triggered sporadically or periodically, and whether the component’s behavior is dependent on states.

Therefore, component-connector models cannot be used to analyze the data flow within a system.
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Inference of Behavioral Models Section 2.8

2.8 Inference of Behavioral Models

Behavioral models of components can be inferred using dynamic analysis by observing the component

behavior of representative execution traces. For example, DiscoTect [77] and Perfume [69] construct

state machines from event traces. Similar approaches also use method invariants [53], Linear Temporal

Logic (LTL) property templates [57] to increase the effectiveness. Domain-specific approaches have

been proposed for for CORBA systems [66] or telecommunication systems [65]. The main limitation

of dynamic approaches that are based on observation alone is that they can measure only correlations

between inputs and states and outputs and cannot make claims about causal relationships. Additionally,

approaches relying on dynamic execution might miss cases in rarely executed software. In contrast to

this, our approach analyzes the control and data flow of the source code and therefore has the capabilities

to differentiate concurrent behavior that just coincidentally happens after an input or state change from

behavior that is control-dependent.

Furthermore, existing dynamic approaches need to execute a large number of representative traces

through the system in real time, which can increase the time and cost of the model creation for

computation-intense systems. In contrast, the approach I am proposing only executes the parts of

the program that cannot be recovered using static analysis. This reduces the number of traces that need

to be executed there minimizes the overall analysis time.
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3 Overview of the Approach

3.1 Architecturally-relevant Behavior

Figure 3.1 (a) shows an example of a bug from theAutoware.AI [47] system inwhich the lattice_trajectory_gen

component requires an input to perform its main functionality although no other component sends this

message. Hence, lattice_trajectory_gen waits indefinitely.

Existing approaches that recover only component-connector models, such as ROSDiscover [82], can-

not find this bug, because they cannot infer that the input is required, i.e., component’s main functionality

depends on it.

Fortunately, only a small part of the overall behavior of a component is relevant to describe the

component’s behavior on an architectural level. This makes it practically possible for static analysis to

infer behavioral component models for complex systems.

To define the semantics of the behavioral models that ROSInfer infers, this section introduces the

formalism of behavioral component models that I will use throughout the proposal.

Architecturally-Relevant Component Behavior

Architecturally-relevant component behavior is the set of all behaviors required to describe what causes
a component to send messages (e.g., triggers, state variables, state transitions).

Component State Machine 𝑪 := (𝑺, 𝒔0, 𝑰 , 𝑶, 𝜹)

A component state machine𝐶 is a 5-tuple of states 𝑆 , an initial state 𝑠0 ∈ 𝑆 , input triggers 𝐼 , outputs𝑂 ,

and transitions 𝛿 .

Component States 𝑺 := [𝒗𝒂𝒓1 : 𝑩1, 𝒗𝒂𝒓2 : 𝑩2, ..., 𝒗𝒂𝒓𝒏 : 𝑩𝒏]

Component states 𝑆 are records of named state variables 𝑣𝑎𝑟1, 𝑣𝑎𝑟2, ..., 𝑣𝑎𝑟𝑛 ∈ 𝑆𝑡𝑟𝑖𝑛𝑔 with types

𝐵1, 𝐵2, ..., 𝐵𝑛 ∈ 𝑇𝑦𝑝𝑒𝑠 .

𝑇𝑦𝑝𝑒𝑠 := {𝐵𝑜𝑜𝑙, 𝐼𝑛𝑡, 𝐸𝑛𝑢𝑚, 𝐹𝑙𝑜𝑎𝑡, 𝑆𝑡𝑟𝑖𝑛𝑔}.

Input Triggers 𝑰 ⊆ 𝑴𝒊𝒏 ∪ 𝑷 ∪ 𝑬

An input trigger is a message handled by an input port 𝒎 ∈ 𝑴𝒊𝒏, a periodic trigger 𝒑𝒇 ∈ 𝑷 with

frequency 𝑓 ∈ 𝐹𝑙𝑜𝑎𝑡 , or a component event 𝒆 ∈ 𝑬 , such as “component started”. To keep the model

simple, the content of messages is not modeled.

Outputs 𝑶 ⊆ 𝑴𝒐𝒖𝒕 ∪ {𝝐}

Outputs are either messages sent through output port𝑚 ∈ 𝑀𝑜𝑢𝑡 or the empty output 𝜖 for transitions

that change only the state but do not produce an output.
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Transition Function 𝜹 := 𝑺 × 𝑰 ⇀ 𝑶 × 𝑺

The partial transition function 𝛿 := 𝑆 × 𝐼 ⇀ 𝑂 × 𝑆 is represented in pre- and post-condition form with

preconditions being predicates on 𝑠 ∈ 𝑆 and 𝑖 ∈ 𝐼 that define for which inputs and states the transition

is triggered and post-conditions defining an output 𝑜 ∈ 𝑂 and the next state 𝑠′ ∈ 𝑆 in terms of 𝑠 and 𝑖 .

Unknown Value ⊤

Finally, the formalism needs a special element ⊤ (pronounced “top”) that is used to represent an

unknown value for cases in which the static analysis is unable to infer the value of an expression (e.g.,

the frequency of periodic publishing, values of initial states, or the right side of assignments of state

variables). It is included in all data types: ∀𝑇 ∈ 𝑇𝑦𝑝𝑒𝑠 : ⊤ ∈ 𝑇 .

3.2 API-Call-Guided Static Recovery

Due to ROSDiscover’s limitation to only recover structural models, we developed an extension, called

ROSInfer that statically infers reactive, periodic, and state-based behavior of ROS components to create

a state machine of architecturally-relevant behavior.

Similar to recovering structural models, we can also made the observation that the ROSAPI is commonly

used to implement architecturally-relevant behavior. By looking for the API calls that define callbacks

for receiving a message (ros::NodleHandle::subscribe), sending a message (ros::Publisher::
publish), or sleeping for the remaining time of a periodic interval (ros::Rate::sleep), we recover
models of architecturally-relevant behavior that can then be used for model-based analysis of the system.

ROSInfer reconstructs state machine models by identifying ROS API calls that implement these types of

behavior, their argument values, and the control flow between them.

We recover reactive behavior by finding control flow from a subscriber callback to a publish call. This

establishes causality between receiving a message and sending another message.

To recover periodic behavior, ROSInfer looks for publish calls within loops that have infinite conditions
(true or ros::ok) that call sleep on a rate object. Recovering the frequency defined in the rate constructor
tells lets us recover the target frequency of the periodic behavior.

To recover state-depended behavior, ROSInfer finds state variables, their initial values, and state

transitions. Our heuristics to identify state variables are (1) the variable is used in control conditions of

architecturally-relevant behavior (i.e., functions that send messages, functions that change state variables,

and of their transitive callers) and (2) the variable is in global or component-wide scope, such as member

variables of component classes or non-local variables. To infer the initial state (i.e., the initial values

for each state variable) of the component, ROSInfer searches for the first definitions of the variables

either in their declaration or the main method. After the state variables are identified, ROSInfer infers

transition conditions by combining control conditions of architecturally relevant behavior using logical

operators and and not depending on whether the path is taking a negation branch (e.g., the else branch

of an if-statement).

We evaluated ROSInfer on 106 components of Autoware,
3
theworld’s leading open source autonomous

driving software, by comparing the recovered behavior with a ground-truth obtained by manually

inspecting the code and creating hand-written models of their actual behavior. If a behavior was not

3 https://www.autoware.org
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found or a value not recovered, we traces this false negative back to limitations of the implementation

that can be fixed with more engineering effort or limitations of the approach. We find that on our data set,

the approach could recover 100 % of periodic behaviors, 84 % of reactive behaviors, 55 % of state variables,

and 67 % of state transitions.

3.3 Partial-Model-Informed Dynamic Recovery

As the results from the evaluation of our current work have shown, static analysis still leaves incomplete

models in some cases (e.g., due to dynamically-loaded libraries or plug-in, use of polymorphism, or values

loaded at run-time. See Section 5.2 for details). Fortunately, since the models are directly derived from

the source code, they could also be used to guide the creation of experiments for dynamic analysis to

fill in the unknown values in incomplete models, or to identify representative paths through the system

that can be used for profiling. This motivates future work on combining static and automated dynamic

analysis to infer behavioral component models that contain more information about the components.

I propose to extend ROSInfer with dynamic analysis that automatically deploys components, sys-

tematically sends messages to it based on the known state machines to collect timing data or to resolve

known unknowns.

3.4 Model-Checking of Common Properties in Robotics Systems

Combining behavioral component models with component-port-connector models, allows for analyses

of intra-component-data-flow. Structural models alone do not contain information how the inputs of a

component are used and what is needed for the component to produce an output. Input-output state

machine models, like the ones ROSInfer infers, can be used to infer which messages at one component

cause messages to be sent in other parts of the system. To check whether the components of a system are

composed correctly, properties such as “An input at input port 𝐼1 of component 𝐶𝑎 can/must result in an

output at output port𝑂1 of𝐶𝑏” can be checked via discrete event simulation [15] or logical reasoning [48].

Furthermore, synchronizing the resulting component state machines at their input/output messages

allows for checking arbitrary LTL properties via approaches such as PRISM [55]. Thereby safety and

security properties, such as the component changing to a desired state, no messages getting lost or

ignored, or a component eventually publish a certain message, can be checked [33, 30, 5].

Additionally, knowledge about the frequencies at which periodic messages get published can be used to

propagate these frequencies to all transitive receivers of this data stream. Therefore, it facilitates checking

the desired frequency of message publishing further down the data stream to avoid unexpectedly high

publishing frequencies.
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bool g_pose_set = false;
void OdometryPoseCallback(const OdometryConstPtr msg)
{ 
 g_pose_set = true; 
}
static const int LOOP_RATE = 10; //Hz
int main(int argc, char** argv)
{
  ros::NodeHandle nh = getNodeHandle();
  ros::Subscriber odometry_subscriber = nh.subscribe(  
     "odom_pose", OdometryPoseCallback); 
  ros::Publisher vis_pub = nh.advertise("next_waypoint_mark");
 

  ros::Rate loop_rate(LOOP_RATE);
    

  while (ros::ok())
  {
    if (g_pose_set == false)
    {
      loop_rate.sleep(); 
      continue;
 } 
 vis_pub.publish(marker); 
 loop_rate.sleep(); 
  }
      

  return 0;
}

State Change
Reactive Behavior

Callback

Trigger

Initial State

Periodic Loop

Message Output

State Condition

Periodic Sleep

(a) Simplified example of a ROS node (lattice_trajectory_gen) that waits for

an input message and then periodically publishes a message with a frequency

of 10Hz.

𝑆 = [𝑔_𝑝𝑜𝑠𝑒_𝑠𝑒𝑡 : 𝐵𝑜𝑜𝑙]; 𝑠0 = [𝑔_𝑝𝑜𝑠𝑒_𝑠𝑒𝑡 = 𝑓 𝑎𝑙𝑠𝑒]
𝑀𝑖𝑛 = {𝑜𝑑𝑜𝑚_𝑝𝑜𝑠𝑒}; 𝑃 = {𝑝10}
𝑀𝑜𝑢𝑡 = {𝑛𝑒𝑥𝑡_𝑤𝑎𝑦𝑝𝑜𝑖𝑛𝑡_𝑚𝑎𝑟𝑘};

𝐼 = {𝑝10, 𝑜𝑑𝑜𝑚_𝑝𝑜𝑠𝑒};𝑂 = {𝑛𝑒𝑥𝑡_𝑤𝑎𝑦𝑝𝑜𝑖𝑛𝑡_𝑚𝑎𝑟𝑘, 𝜖}

Transitions:

OdometryPoseCallback(𝒔 ∈ 𝑺, 𝒊 ∈ 𝑰 ):
pre: 𝑖 == 𝑜𝑑𝑜𝑚_𝑝𝑜𝑠𝑒

post: 𝑔_𝑝𝑜𝑠𝑒_𝑠𝑒𝑡 ′ = 𝑡𝑟𝑢𝑒 and 𝑜 = 𝜖

periodic(𝒔 ∈ 𝑺, 𝒊 ∈ 𝑰 ):
pre: 𝑖 == 𝑝10 ∧ 𝑠 .𝑔_𝑝𝑜𝑠𝑒_𝑠𝑒𝑡 == 𝑡𝑟𝑢𝑒

post: 𝑠′ = 𝑠 and 𝑜 = 𝑛𝑒𝑥𝑡_𝑤𝑎𝑦𝑝𝑜𝑖𝑛𝑡_𝑚𝑎𝑟𝑘

(b) Example model for code shown in Figure 3.1 (a). The first transition

handles input at input port 𝑖𝑛 and changes the state variable ready to true

without an output. The second transition triggers periodically with a fre-

quency of 10Hz if the state variable ready is true. Then it sends a message.
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4 Bug Data Set

To illustrate the variety of real-world architecture misconfiguration bugs and to foster more research and

evaluation on them, we constructed and provided a data set of bugs from real-world open-source ROS

systems.

This data set can be used to study properties of architecture misconfiguration bugs and to evaluate bug

finding techniques for these bugs.

4.1 A Data Set of Analyzable ROS Systems

First, we identified candidate ROS systems that are viable candidates for evaluation of static architectural

recovery by using the following selection criteria:

• Programming Language: To facilitate the evaluation of static analysis that only target C++ and

can ignore Python code, we selected ROS systems primarily comprised of C++ code. For systems

with a few Python components we manually created the models.

• Availability of a Simulator: To allow dynamic analysis and run-time observation of the behavior

of ROS components, the corresponding system should come with a simulator that can be run within

a Docker image.

• Popularity:We focused on systems that were highly starred on GitHub as representative of the

target audience for ROSDiscover.

We used the data set from Malavolta et al. [60] as a basis for the system selection. The resulting systems

are: AutoRally [32], Autoware [47], Fetch [87], Husky, and TurtleBot [79]. Table 4.1 provides an overview

indicating lines of code for each system, and the number of misconfiguration bugs we considered for RQ3.

System Stars Lines of XML Lines of Code Bugs for RQ3

AutoRally 638 43 455 190 340 5

Autoware 4985 30 771 250 509 8

Fetch 126 149 664 434 022 0

Husky 264 54 699 876 405 5

TurtleBot 239 1 237 887 1 596 546 1

Table 4.1: Systems used for evaluation with their stars on GitHub (as of 8th November 2021), lines of XML

configuration files, lines of code including their dependent ROS packages, and the number of bugs selected for RQ3.
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System Commits Contributors Releases Bugs in Data Set

AutoRally 615 21 11 8

Autoware 3570 74 16 12

MAVROS 2503 99 40 1

Husky 511 24 46 6

TurtleBot 1142 29 92 2

Table 4.2: Statistics on the systems contained in our bug data set.

4.2 A Data Set of Architecture Misconfiguration Bugs in ROS

Second, we identified bugs within the systems described in Section 4.1 with the following methodology:

Selection Criteria: We collected documented bugs on GitHub from repositories discussed in Malavolta

et al. [60] (as these repositories are well-studied and mature). For each repository, we searched for the key

words “topic bug”, “topic fix”, “subscribe bug”, “subscribe fix”, “publish bug”, “publish fix”, “topic rename”,

“launch file fix”, and “launch file bug” in commits, issues, and pull requests. Not all of the results refer to

run-time architecture misconfigurations, and so we manually verified/filtered the bugs by inspecting the

code, change history, and documentation. We excluded bugs for which we were unable to compile the

software versions. As shown in Table 4.2, the data set contains 29 bugs across 5 systems. Note that this is

not intended to be a complete list of architecture misconfiguration bugs in those systems.

Collected Data: For bugs caused by a broken publish-subscribe connector (i.e., inconsistent topic

names or message types), we identified the publisher, topic, subscriber, and a set of launch files that

launch the corresponding nodes. For bugs caused by a wrong configuration (i.e., inconsistent parameter

names or parameter types), we identified the launch files and the misconfigured nodes. To formally define

the misconfiguration types, we also list a corresponding architectural well-formedness rule violated

by the bug. To enable users of our data set to verify their testing environment, each bug consists of a

bug-commit at which the bug is present, and a bug-fix commit. Docker images for each bug containing the

source code, all its dependencies, and the compiled executables for analysis can be found in the artifact.

Building Historic Project Versions: Some of the commits related to the bugs are many years old and

were built with much older versions of their dependencies and much older versions of ROS (the oldest

bug dates back to March 2014 and was reproduced with ROS Indigo Igloo). To support replicability, we

created Docker images for each commit, each containing the versions of their build- and run-dependencies

(including ROS packages, Compute Unified Device Architecture (CUDA) API version, external libraries,

compilers, and the ROS distribution). If the project documented which versions of a dependencies were

used, we installed these in the Docker image. Otherwise, we installed the most recent version at the

time of the corresponding commit date.
4
For versions for which we were unable to construct the Docker

images according to this methodology, we forward-ported the bugs (i.e., applied the bug-introducing

change to a version of the software that we can build).

To identify which of these bugs can be found with structural architectural recovery, I evaluated

ROSDiscover on this data set with the following results:

4 Using https://github.com/rosin-project/rosinstall_generator_time_machine
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Bug-ID Detected In Theory Description

autoware-02 Dangling connector

autoware-10 Dangling connector

autorally-01 * ✓ Inconsistent topic names

autoware-01 ✓ Inconsistent topic names

autoware-04 Inconsistent topic names

autoware-05 ✓ Inconsistent topic names

autoware-11 ✓ Inconsistent topic names

husky-02 * ✓ Inconsistent topic names

husky-03 ✓ Inconsistent topic names

husky-04 * ✓ Inconsistent topic names

husky-06 * ✓ Inconsistent topic names

autorally-05 ✓ Incorrect parameter path

autorally-03 * ✓ Incorrect topic remapping

autorally-04 * ✓ Incorrect topic remapping

husky-01 ✓ Incorrect topic remapping

turtlebot-01 ✓ Incorrect topic remapping

autoware-03 ✓ Topic name typo

autoware-09 ✓ Topic name typo

autorally-02 ✓ Topic name variable ignored

Table 4.3: Overview of the architectural misconfiguration bugs and whether ROSDiscover has detected the bug

with the given rules (“Detected”) or whether it is only detectable in theory due to static recovery limitations (“In

Theory”). A star (“*”) after the bug name means the bug was detected using forward-porting. The bug-ids reference

the folders in /experiments/detection/subjects in our artifact.

4.3 Conclusions and Implications for the Proposal

This chapter has presented a newly collected data set of architecture misconfiguration bugs that will

be used for evaluation of the presented approach. The following chapters will describe my current and

proposed work that is intended to show we can find more architecture misconfiguration bugs than

existing work (ROSDiscover) by inferring behavioral component models.
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5 ROSInfer: Static Analysis to Infer
Behavioral Component Models

This section describes our approach of static recovery of behavioral component models for ROS systems

and the implementation of this approach in our tool called ROSInfer. Our approach is based on the

observation that reactive, periodic, and state-based behavior of ROS component is often implemented using

the API that ROS provides, as shown in Figure 3.1 (a). By looking for the API calls that define callbacks

for receiving a message, sending a message, or sleeping for the remaining time of a periodic interval,

we aim to recover models of architecturally-relevant behavior that can then be used for model-based

analysis of the system.

Behavioral component models describe causal relationships between dynamic aspects of the compo-

nent’s interface. Each element of the behavior includes four parts:

1. An optional output. This describes messages being sent from the component. The formalism

includes a special element for the non-output.

2. A trigger. In component-based systems there are three types of triggers for architecturally-relevant

behavior:

a) Reactive triggers: The behavior was a reaction to a message the component received at a

port.

b) Periodic triggers: The behavior is executed periodically. After completion it waits for the

remaining time of the periodic interval so that themessage gets sent with a constant frequency
5

c) Component triggers: The behavior was triggered by a component-event, such as when the

component was first started, or it (un)subscribed from/to a topic.

3. Conditions on the state to determine whether the trigger leads to the executing the behavior.

4. State changes that result from the behavior.

The key idea of our approach is to reconstruct the output and the trigger of component behavior by

identifying ROS API calls that implement these types of behavior, their parameter values, and the control

flow between them.

5.1 Statically Inferring Component Behavior Model

The analysis process and data-flow is shown in Figure 5.1.

In general, even inferring only architecturally-relevant behavior is challenging, because theoretically

any piece of code could send a message. Fortunately, the following observations about the ROS framework

allow us to narrow down the analysis:

5 Note that the actual frequency can be lower than the target frequency if the component takes more time for each iteration

than the target frequency allows. In this work, we ignore this case and discuss how to overcome this limitation in future

work.
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ROSInfer

Initial
 State

State  
 Variables

1. API Call
Detection

3. State Variable 
Detection

2. Behavioral 
Pattern Detection

5. Initial State 
Inference𝑷	 𝑴𝒐𝒖𝒕	 𝑴𝒊𝒏	 𝑬 𝑺 𝒔𝟎Source

Code
4. Transition 

Inference

Model
𝑪

Behavioral 
Patterns Transitions 𝜹

Figure 5.1:Overview of the ROSInfer static analysis. Boxes represent analysis steps, gray ovals represent elements

of the output model, white ovals represent intermediate results, and arrows indicate data flow.

Component Framework API: Inter-component communication for sending and receiving messages

happens almost exclusively via API calls that have well-understood architectural semantics [75,

82].

Behavioral Patterns Usage: The triggers of message sending behavior are usually implemented using

common behavioral patterns (e.g., implementing periodic behavior by sending messages in an

unbounded loop that sleeps for the rest of an interval).

We consider behavior to be reactive if it is triggered by receiving a message or a component-event (e.g.,

component started/stopped or (un)subscribed from/to a topic). We consider behavior to be periodic if it is
triggered with a constant target frequency. Periodic and reactive behavior can both be state-based, i.e.,
triggered only under conditions depending on the state of the component.

The key idea of our approach is to find ROS API calls that implement the triggers or outputs of

architecturally-relevant behavior, infer the API call arguments, find control flow leading to message

sending behavior, and reconstruct state variables and state transitions on which architecturally-relevant

behavior depends. While our approach is focusing on the ROS ecosystem, it can generalize to every

framework or ecosystem for which the observations listed above hold true as well.

The remainder of the section describes each analysis step.

5.1.1 API Call Detection

The first step in API-call-guided inference of component behavioral models is to detect API calls that

implement elements of architecturally-relevant behavior. ROSInfer accomplishes this by traversing the

Abstract Syntax Tree (AST) and detecting syntactic patterns that identify architecturally-relevant API

calls (see below). For most kinds of API calls, ROSInfer then attempts to recover the values of arguments

and the object on which the function to infer additional details, such as what port owns this behavior, or

the frequency / duration or sleep calls.

ROSInfer detects the following API calls and behaviors:

Inferring Message Outputs 𝑴𝒐𝒖𝒕 : To infer message outputs𝑀𝑜𝑢𝑡 behavioral inference approaches

need to identity points in the component’s source code that send messages to other components. In

publish-subscribe systems, this consists of API call to publish a message and corresponding wrapper

APIs.

ROSInfer detects API calls to Publisher::publish and commonly usedwrapper APIs (e.g., diagnos-

tic_updater, CameraInfoManager, and tf::TransformBroadcaster::sendTransform). To identify

the corresponding output port, ROSInfer infers the publisher object on which each publish call is made.
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Inferring Reactive Triggers 𝑴𝒊𝒏: To infer reactive triggers, behavioral inference need to looks for

the control flow entry points (i.e., callbacks that handle a received message or a requested service or

the component being started). In publish-subscribe styles, subscriber callbacks define the component’s

behavior in response to receiving a certain message. Analogously, in call-return styles service call callbacks

need to be identified.

To identify control flow entry points ROSInfer looks for callbacks defined as parameter to the ROS

API calls NodeHandle::subscribe (see Figure 3.1 (a)), MessageFilter::registerCallback,6 or
NodeHandle::advertiseService.

Inferring Periodic Triggers 𝑷 : To infer periodic triggers, behavioral inference needs to identity

sleep calls. There are two kinds of sleep calls: (1) constant-time sleep calls that sleep for the same time every

time they are called, (2) filling-time sleep calls that sleep for the remainder of a periodic interval every

time they are called. Filling-time sleep calls allow the accurate static inference of the target frequency

(unless the execution of each cycle takes longer than the cycle time, resulting in a lower actual frequency)

while constant-time sleep calls can only provide an upper bound of the frequency, since execution times

of other statements are not captured.

C++ offers three common constant-time sleep calls: usleep, sleep, and std::this_thread::
sleep_for. The ROS framework offers Duration::sleep. ROSInfer detects these calls and infers

the duration and their units from arguments using constant-folding.

ROS offers two filling-time API calls: Rate::sleep, which is called on a rate object (see periodic sleep

in Figure 3.1 (a)), and NodeHandle::createTimer, which has a rate object and callback as argument.

Since the frequency is specified in the constructor of the Rate object ROSInfer uses constant-folding to

infer the frequency’s value and denotes it with ⊤ if it cannot constant-fold it.

5.1.2 Behavioral Pattern Detection

After API call detection, ROSInfer builds an abstract representation of the program that contains APIs

calls, control flow statements, function calls, and assignments. On this abstract representation, ROSInfer
detects behavioral patterns that describe the architecturally-relevant behavior.

Detecting Reactive Behavior: Reactive publishing behavior is message sending that is caused by

receiving a message. The pattern to detect message outputs reacting to message inputs, is checking for a

path in the call graph from the callback method for each input port 𝑖𝑛 ∈ 𝑀𝑖𝑛 to any of the publish calls

𝑜𝑢𝑡 ∈ 𝑀𝑜𝑢𝑡 . Since some systems pass publish objects as arguments to functions that then call publish on

their arguments, ROSInfer tracks the object identity of arguments when traversing the call graph.

The other pattern for reactive behavior that ROSInfer identifies is if a publish call happens (transitively)
within in the main method (and can happen in the initial state) then it responds to the component event

“component-started” ∈ 𝐸.

Detecting Periodic Behavior: Periodic publishing behavior is repeated sending of a message of the

same type with a constant upper target frequency (note that messages do not necessarily always have to

be sent every interval). The pattern to detect periodic behavior is checking for publish calls that happen

(transitively) within unbounded loops that (transitively) contain a sleep call. To identify unbounded loops

ROSInfer considers loop conditions that are either true or ros::ok().

6 To filter messages or to define a single callback method for multiple subscribers, ROS offers the message filters API.
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5.1.3 State Variable Detection

The key idea to infer state variables statically is to look for variables in the code that store state information,

such as ready in Figure 3.1 (a). We use the following heuristics to identify variables that represent

component state.

Usage Heuristic: The variable is used in control conditions of architecturally-relevant behavior (i.e.,

functions that send messages, functions that change state variables, and of their transitive callers). Control

conditions describe the conditions that determine whether a statement is executed.

Scope Heuristic: The variable is in global or component-wide scope, such as member variables

of component classes or non-local variables. Since local variables are used close to their assignments,

they are less likely to capture state information than variables that can be changed in callbacks or other

functions. This heuristic limits the search space and complexity of the resulting models, because control

conditions can contain complex logic that defined behavior that is not architecturally relevant.

To implement the usage heuristic ROSInfer first infers all control conditions for all publish calls and

their transitive calls and removes conditions on variables that do not satisfy the scope heuristic and using

constant folding to replace variables and constants with the literals that they represent.

5.1.4 Transition Inference

After detecting state variables are and inferring behavioral patterns for reactive and periodic behaviors,

the only information that remains to be inferred to create complete transition functions 𝛿 are conditions

on state variables and state changes. ROSInfer identifies the intra-procedural control conditions for

each publish call and its transitive function calls. In an inter-procedural analysis on the call graph starting

from the behavior’s trigger ROSInfer then combines the control conditions of function calls ending in

the publish call. Conditions are combined using a logical AND and negated in the case of taking the else
branch of an if-statement.

To infer state changes, ROSInfer detects assignments to state variables, constant-folds the right hand-

side of the assignments, and infers the assignments’ triggers in the same way as for other architecturally-

relevant behavior as described above. ROSInfer then groups behaviors by triggers and state conditions

and builds the union of all outputs and state changes with the same triggers and conditions.

5.1.5 Initial Value Inference

To infer the initial state 𝑠𝑜 ∈ 𝑆 (i.e., the initial values for each state variable) of the component, ROSInfer
searches for the first definitions of the variables. These can be either in their declarations, in the program

entry point of the component (e.g., main) and its transitive calls, or in statements or initializers of

component class constructors. If an initial expression is found ROSInfer attempts to constant-fold the

expression. Analogous to previous cases, values that cannot be constant-folded are denoted with ⊤.

5.2 Evaluation

In this sectionwe describe howwe evaluate the overall approach of API-call-guided recovery of component

behaviors in ROS systems as well as our implementation of ROSInfer on large, real-world open source

ROS systems.
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In this section we describe how we evaluate the overall approach of API-call-guided static inference

of architecturally-relevant component behavior in ROS systems as well as the results of our evaluation

of ROSInfer’s recovery rate, recall, precision, and execution time on five large, real-world open source

ROS systems.

5.2.1 Experimental Setup

To evaluate ROSInfer we asked the following research questions:

RQ 1 (Recovery Rate) Results in Section 5.2.2

How high is ROSInfer’s recovery rate for real-world ROS systems, i.e., what is the percentage of

inferred architecturally-relevant behaviors that can be recovered completely?

When static analysis detects message sending behavior within a component’s source code (e.g., a

message-sending API call) it attempts to infer a complete behavioral model of what causes the component

to send this message (e.g., to what input it reacts, at what periodic frequency it is sent, in what state it

is sent). Since static analysis cannot always recover all parts of this behavior, resulting models can be

partial (i.e., include known unknowns ⊤). To measure how often static analysis fails to infer parts of

the resulting model as a measure of how complete and precise inferred models are in the practice we

calculate the recovery rate for different behavior for real-world ROS components.

RQ 2 (Recall) Results in Section 5.2.3

How high is ROSInfer’s recall for real-world ROS systems, i.e. what percentage of architecturally-

relevant component behavior can ROSInfer infer correctly?

Our approach is based on the assumption that developers of ROS systems commonly use the ROS

API and behavioral patterns to implement architecturally-relevant component behavior. So even if the

static analysis could recover all elements of detected behaviors it might miss behaviors that violate this

assumption. To validate this assumption and to evaluate how many behaviors ROSInfer missed we

measured the recall compared to a ground truth. This metric measures the degree of completeness of

the set of inferred behaviors on real-world ROS systems. To measure this, we executed ROSInfer on

real ROS components with corresponding ground truth models and compared the output for different

behavior types.

RQ 3 (Precision) Results in Section 5.2.4

How high is ROSInfer’s precision for real-world ROS systems, i.e., what percentage of inferred

architecturally-relevant component behaviors are true positives?

Since ROSInfer uses heuristics to infer architecturally-relevant behaviors, it can incorrectly classify

behaviors as periodic or reactive to a component event or component input, and can include unnecessary

or incorrect state variables or state transitions. To evaluate how many false positives are in the inferred

models, i.e., how often ROSInfer infers behaviors that do not exist in the real program, we measured the

precision of inferred models compared to a ground truth. This metric measures the degree of soundness

of ROSInfer’s inference heuristics on real-world ROS systems.
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Overview of Evaluation Systems: For all research questions we evaluated ROSInfer on five large

real-word open source systems: Autware.AI [47], AutoRally [32], Fetch [87], Husky, and Turtlebot [79]

from the data set presented in Timperley et al. [82]. To demonstrate the complexity and size of the systems

used for evaluation, statisitics are shown in ??. Some components are part of multiple of these systems

due to component reuse, leaving 542 unique components in total.

Ground Truth Models: Measuring recall and precision requires a ground truth to compare to.

Unfortunately, there is no reliable ground truth available for the architectural behavior of ROS components.

Therefore, we needed to create ground truth models by hand by via manual source code inspection of

the five ROS systems mentioned in Table 4.1. Due to the large size and complexity of these systems, we

could not construct models for all 518, so for each system we randomly picked components (excluding

components that are test or demo components that do not contain architecturally-relevant behavior).

Christopher Timperley and I evenly split the work.

To ensure consistency we first created a protocol for manual model inference, which is included in the

replication package. The protocol includes steps to infer behaviors, a consistent format notation, and

descriptions of how to handle exceptional cases that do not fit into the given format.

To validate the accuracy of manually inferred models, we measured the agreement of an overlap of 21

models (14.19% of total) that were inferred by both authors, intentionally including some of the most

complex models in this overlap. We agreed completely on 86 % of these components and partially on the

remaining three components. After a discussion of the few differences in inferred models, we identified

one case in which one author missed a type of publishing behavior, which resulted in revising existing

models to fix their representation, and two cases of inaccurately modeled behavior that resulted in refined

ground truth models.

All 155 hand-written models are also included in the replication package and are available as a data set

for other researchers studying behavioral component models of ROS-based systems.

Threats to Validity: With respect to internal validity, the ground-truth models were inferred by

two of the paper’s authors who have not been involved in the development of the case study system.

Since the creation of formal models for complex component behavior is error-prone and requires deep

understanding of the domain, we cannot guarantee the correctness or completeness of all models. We

attempted to reduce this threat to validity by measuring agreement between authors on model on a

certain portion of handwritten models.

With respect to external validity, the results of the evaluation might not necessarily generalize to other

ROS systems if their usage of the ROS API or patterns of implementing architecturally relevant behavior

is significantly different from the five case study systems. We reduced this treat by selecting diverse case

studies with Autoware and AutoRally being mostly self-contained industrially-developed system and

Husky, Fetch, and Turtlebot following a typical open-source mentality.

5.2.2 Measuring Recovery Rate (RQ1)

Methodology: As discussed in Section 5.1, ROSInfer denotes values that cannot be statically recovered

with ⊤ to indicate unknown values. So the main metric for the recovery rate is how often ⊤ is included

in parts of the resulting model.

We ran ROSInfer on all 542 components of the five systems presented in ??. Components that are

includes in multiple systems only count once. For 12 components the static analysis crashed due to errors

in Clang, 7 timed out after 1 hour, so these components are excluded from the evaluation, leaving 518. For
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Table 5.1: Results for RQ1: The trigger types recovery rate is the percentage of inferred publish calls for which

ROSInfer can infer what kind of trigger causes that behavior (periodic or reactive). For each sub-type of behavior,

percentages show how many of that type do not contain unknowns (⊤) in the inferred modes of a total of 518

components of the five large real-world systems presented in ??. 𝑁 is the total number of behaviors of the respective

type inferred by ROSInfer (all publish calls in the case of trigger types). The All row counts components that are

included in multiple systems only once.

System Trigger Types Periodic Rates Reactive Triggers Initial States State Changes

AutoRally 68.42% (𝑁 = 38) 78.57% (𝑁 = 14) 100.00% (𝑁 = 12) 100.00% (𝑁 = 1) 100.00% (𝑁 = 1)

Autoware 90.24% (𝑁 = 420) 93.88% (𝑁 = 98) 100.00% (𝑁 = 281) 73.61% (𝑁 = 72) 80.90% (𝑁 = 199)

Fetch 86.21% (𝑁 = 29) 0.00% (𝑁 = 1) 100.00% (𝑁 = 24) 66.67% (𝑁 = 6) 100.00% (𝑁 = 5)

Husky 92.45% (𝑁 = 53) 90.91% (𝑁 = 11) 100.00% (𝑁 = 38) 45.45% (𝑁 = 11) 100.00% (𝑁 = 9)

Turtlebot 88.10% (𝑁 = 42) 66.67% (𝑁 = 12) 100.00% (𝑁 = 25) 80.77% (𝑁 = 26) 100.00% (𝑁 = 19)

All 87.87% (𝑵 = 544) 90.23% (𝑵 = 133) 100.00% (𝑵 = 345) 76.70% (𝑵 = 103) 82.96% (𝑵 = 223)

Table 5.2: Recall and precision of ROSInfer based a comparison with 148 manually inferred component models.

𝑇𝑃 , 𝐹𝑃 , and 𝐹𝑁 are the number of true positives, false positives, and false negatives compared to the ground truth

models.

System Models Periodic Behaviors Reactive Behaviors State Variables State Transitions
𝑇𝑃 𝐹𝑁 𝐹𝑃 𝑇𝑃 𝐹𝑁 𝐹𝑃 𝑇𝑃 𝐹𝑁 𝐹𝑃 𝑇𝑃 𝐹𝑁 𝐹𝑃

AutoRally 13 15 0 0 11 6 0 1 2 0 1 3 0

Autoware 119 22 2 0 147 18 15 30 10 7 43 12 4

Fetch 11 1 0 0 8 5 0 3 0 0 2 1 0

Turtlebot 5 2 0 0 5 0 2 2 0 1 3 0 0

All 148 40 2 0 171 29 17 36 12 8 49 16 4

Recall 95.2 % (of 42) 85.5 % (of 200) 75.0 % (of 48) 75.4 % (of 65)

Precision 100.0 % (of 40) 91.0 % (of 188) 81.8 % (of 44) 92.5 % (of 53)

each type of architectural behavior we then calculated the percentage of unknowns included in inferred

values (i.e., target frequencies for periodic behavior, triggering events or callbacks for reactive behavior,

initial values for state variables, and new values for state transitions). These numbers represent how well

ROSInfer can infer all parameters of a detected behavior.

Further, the trigger types recovery rate metric measures how often ROSInfer can recover the trigger

for detected publishing behavior:

Trigger Types Recovery Rate (Evaluation Metric)

The trigger types recovery rate approximates the inferred proportion of the total architecturally-relevant

component behavior by measuring the percentage of message publishing calls for which ROSInfer
can infer the cause of the behavior (i.e., for which a behavioral pattern with corresponding trigger

was detected).

Note that this metric overapproximates recall in cases in which publish calls are hidden in inaccessible

source code (e.g., in DLLs) but underapproximates recall in cases in which publish calls happen in uncalled

callback (e.g., XbeeCoordinator and obstacle_sim).
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After the quantitative analysis, we manually inspected each case of unknown values to conduct an

in-depth qualitative analysis of the limitations of ROSInfer using open coding and linked examples.

Results for RQ 1 (Recovery Rate) See Table 5.1

In a exhaustive analysis of five large real-world ROS systems with 518 components the overall trigger
types recovery rate is 88%. The proportion of inferable values is 90 % for periodic rates, 100 % for

reactive triggers, 77 % for state variable initial values, and 83 % for state changes.

Results: Detailed quantitative results are shown in Table 5.1.

AutoRally has the lowest trigger types recovery rate, because many components respond to inputs of

serial devices with project-specific API (e.g., AutoRallyChassis, GPSHemisphere).

Cases in which ROSInfer cannot recover periodic rates include rates that are loaded from compo-
nent parameters (e.g., runStop, fake_camera, adis16470_node, robot_pose_ekf, yocs_virtual_sensor, li-

dar_fake_perception, AutoRallyChassis, watchdog_node), return values of function calls (e.g., robot_pose_ekf),
conditional behavior (e.g., yocs_virtual_sensor).
Cases in which ROSInfer cannot recover initial states include primitive types with implicit ini-

tialization (e.g., decision_maker_node), ignored functions (e.g., tl_switch, decision_maker_node,

way_planner_core).

State transitions include unknowns if and only if the right hand-side of assignments or state variables

that cannot be constant-folded.

Reactive triggers can be recovered completely, since ROSInfer’s current implementation does not

include component events or message inputs that can include unknown values.

5.2.3 Measuring Recall (RQ2)

Methodology: After creating the handwritten models as ground truth (see Section 5.2.1) we executed

ROSInfer on the source code and compared the results by treating the handwritten models as ground

truth. The existence of model elements is compared automatically, while expressions in conditions are

compared by humans to judge whether they are logically equivalent. After the quantitative analysis,

we then manually inspected each false negative to conduct a qualitative root cause analysis of missed

behaviors.

Results for RQ 2 (Recall) See Table 5.2

In a ground-truth comparison with 148 components ROSInfer has a recall of 95 % for periodic behavior,

86 % for reactive behavior, 75 % for state variables, and 75 % for state transitions.

Results: Detailed quantitative results are shown in Table 5.2.

Cases in which ROSInfer cannot detect reactive behavior include the use of virtual methods (e.g.,
joystick_teleop), behavior that is triggered by other events than receiving a message in subscriber

callback, such as reacting to messages from external devices received via serial ports (e.g., vg440_node),

Mqtt messages (e.g., mqtt_receiver), or CAN-Bus (e.g., vehicle_receiver), our approach cannot infer the

trigger for this behavior.
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lane_planner::vmap::VectorMap all_vmap; 
void cache_point(const vector_map::PointArray& msg)
{ 
 all_vmap.points = msg.data; 
 update_values();
}
void update_values()
{
 if (all_vmap.points.empty() || all_vmap.lanes.empty() 
  || all_vmap.nodes.empty())
   return;
 [...]
 lane_planner::vmap::publish_add_marker([...]);
}

State Change 
to Non-Empty

State Condition

Message Output

Figure 5.2: Simplified code snippet showing an example

from waypoint_clicker in Autoware.AI for which our ap-

proach cannot recover the state machine. The analysis would

need to model the state of a vector map containing multiple

arrays and identify that the assignment in the cache_point
subscriber callback affects the return value of the empty call.

Cases in which ROSInfer cannot recover

state variables include complicated object
logic, such as whether a list or map is empty

(e.g., vscan2image). Figure 5.2 shows an exam-

ple of this. This requires a deeper understand-

ing of the objects owned by the component

that are used to represent its state and are

therefore a limitation of the approach. Condi-

tions on object fields can contain implicit de-

pendencies that cannot easily be inferred stat-

ically. For example when a subscriber callback

initializes the image stored in a state variable

whose width and height are checked to be pos-

itive numbers in a control condition (image.
width > 0 && image.height > 0) a hu-
man developer can infer that this condition

refers to checking whether the initialization in the subscriber callback has been called implying that the

component has received the message. This dependency that is implicit due to complex logic within the

imagine object cannot be inferred statically.

5.2.4 Measuring Precision (RQ3)

Methodology: For each behavior category we calculated the number of inferred behaviors that are part

of the output of ROSInfer but not part of the ground truth models. We then manually inspected each

false positive to conduct a qualitative root cause analysis of incorrectly classified behaviors.

Results for RQ 3 (Precision) See Table 5.2

In a ground-truth comparison with 148 components ROSInfer has an precision of 100 % for periodic

behavior, 91 % for reactive behavior, 82 % for state variables, and 92 % for state transitions.

Results: Detailed quantitative results are shown in Table 5.2.

False positives for reactive behavior are caused by a limitation of our current implementation that

treats periodic behavior in main as reactive to component-started regardless of potential state-conditions,

which can be fixed in the future.

False positives of state variables are caused bymistaking a configuration parameter for a state variable
(e.g., amcl), mistaking variable identity due to overloaded variable names (e.g., control dependencies on

assignments to another state variable false positive (e.g., pos_downloader), and control dependencies

on assignments to another state variable false positive (e.g., pos_downloader).
False positives of state transitions are caused by false positives of the corresponding state variables.

5.2.5 Measuring Execution Time

When running ROSInfer on Autoware.AI on a server with 4 Intel(R) Xeon(R) Gold 6240 CPUs (each has

18 cores at 2.60GHz) with 256GB RAM, the static analysis took on average 44.93 s. The fully automated
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analysis of the entire Autoware.AI system took 4.58 h and much shorter for the other systems (Autorally:

18.23min, Fetch: 31.25min, Husky: 35.28min, Turtlebot: 49.40min). This should demonstrate that the

static analysis scales to real-world systems and could integrate well into iterative software development

practices.

In practice, static model inference approaches like the presented approach would integrate well in

iterative development processes since they support automatic regeneration of models when they sources

change. Changes to the code base require regeneration of only the components that are affected by the

code change, since ROSInfer infers which source files are required to infer each component model. This

would dramatically reduce the time to update the system’s behavioral model.

The effort it took to create the 155 handwrittenmodels of this evaluation can be approximatedwith about

120 work hours of manual labor. In practice, the developer time saved will be lower than the difference

between these two numbers, because developers potentially need to replace the known unknowns (⊤)
with correct values and cannot fully rely on the inferred models being complete. While in this paper we

do not quantify the saved effort, we present these numbers to demonstrate that the approach can save a

significant portion of time to infer models, making model-based analysis more accessible, economical,

and scalable to large systems.

5.3 Conclusions and Implications for the Proposal

This chapter has shown additional evidence towards the thesis statement by showing that assumptions

about framework-specific APIs enable the automatic inference of partial behavioral component models for

ROS-based robotics systems. The following chapters will describe how I propose to complete the partial

models and how to show that these models can be practically useful to find architecture reconfiguration

bugs.
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6 Completion of Behavioral Mod-
els using Dynamic Analysis

As the results from the evaluation of ROSDiscover and ROSInfer have shown even perfect static

analysis still leaves incomplete models in some cases. Fortunately, since the models are directly derived

from the source code, they could also be used to guide the creation of experiments for dynamic analysis

to fill in the unknown values (⊤) in incomplete models, or to identify representative paths through the

system that can be used for profiling. This motivates future work on combining static and automated

dynamic analysis to infer behavioral component models that fill in the known unknowns of the statically

inferred models.

I propose to extent ROSInfer with dynamic analysis that automatically deploys components, system-

atically sends messages to it based on the known state machines to collect data that resolves known

unknowns.

6.1 Existing Work

Existing work from other software domains [16, 17, 40] controls the system-level inputs and observes the

behavior of a running system to extract behavioral models. The lack of controllability of component-level

inputs of system-level approaches result in not being able to observe traces through components that

would be caused by a changes in collaborating components. Therefore, resulting component models

cannot predict how the component behaves under changes to its collaborating components or when the

component is reused in a different system, which is an important requirement for behavioral component

models to be useful within the reuse-heavy ROS ecosystem.

First, the analysis will instrument the code of each component based on the known unknowns of the

partial, statically-inferred models. Second, the analysis will deploy the components in the system in a con-

figuration found in existing launch files. Then, the analysis will observe the components’ behavior while

controlled the input ports to systematically cover a large portion of the component’s interface. Finally,

the individual component behavior models get combined based on a given architecture configuration to

analyze the system behavior. Since the component behavior models capture a wider range of component

environments than those visible in the configuration of the current design, the resulting models can

be used to predict the system-level behavior under changes to the system to find better architectural

configurations or simulate a change to the architecture before implementing it.

6.2 Approach

6.2.1 ROS Component Testbed Infrastructure

To address the challenges of controllability and observability of component behavior, I propose to develop

a component testbed instrastructore for ROS components.

Deploying Components: To deploy each component, we will identify launch files from repository
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that represent an complete configuration of the system. This step requires available launch files for each

node. If they cannot be found in the project directly, they need to be specified before-hand.

Controlling Components via Mocked Inputs: Due to the decoupled nature of publish-subscribe

connectors, sending inputs into ROS components is generally easier than in the general case, as it only

requires to publish a message to the input topics of a component. ROS offers a replay rosbag files

to send timed messages to topics. If rosbag turns out to be not flexible enough for this purpose, an

alternative options is to generate a small script that sends messages to topics and sleeps for the durations

between messages. Service calls and action calls need programmatic triggers via generated script. Since

the interface of the ports is known due to ROSDiscover [82], all information needed to generate API

calls is available.

Observing Internal Component Behavior via Automated Application Instrumentation: To

observe internal component behavior that cannot be recovered statically, which results in unknown

values ⊤ in statically recovered models, I propose to instrument the application code with additional

logging functionality. Since the recovered models from ROSInfer map model elements to source code

locations each unknown model value ⊤ can be traced precisely to where in the code it is being used.

Therefore, automatic code instrumentation can add logging code in these locations to write dynamically

observed values for unknown model values into a separate logging file.

6.2.2 Experiment Creation

An important research challenge for this contribution is finding a wide range of representative inputs and

and environment configurations without requiring exhaustive testing. For this purpose, the availability

of path conditions to architecture-relevant behavior inferred via static analysis could be helpful. Also,

existing research in fuzzing can support systematic exploration of the input space.

6.2.3 Model Inference

The final step of the dynamic analysis is to aggregate observations to extend statically-inferred component

models. This step involves automatically identifying clusters of values and grouping them by a unifying

condition. I plan to use existing data analysis techniques for this step.

6.3 Evaluation

The evaluation of completing statically inferred models will follow the same research questions, use the

same metrics, and use the same data as the evaluation of ROSInfer (see Section 5.2).

6.4 Conclusions and Implications for the Proposal

This chapter has outlined my plan to complete the partial models generated with dynamic analysis. The

following chapters will describe how I propose to show that these models can be practically useful to find

architecture reconfiguration bugs to provide further evidence for the thesis statement.
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7 Model-based Analyses for Robots

After presenting my approach to infer behavioral component models, this chapter describes my proposed

work on creating model-based analyses to find bugs based on these models to demonstrate that the

models are useful.

7.1 Proposed Analyses

The models inferred with the proposed approach can be analyzed for a variety of properties and behaviors.

This section lists the properties and behaviors that could be supported, discusses the implications of

supporting them, estimates the effort to do so, and prioritizes them based on estimated effort and

importance.

Deadlock Freedom: To avoid a situation in which components get into a deadlock because they

indefinitely wait for each other’s messages model-based analyses can check for deadlocks in the system.

The are two types of deadlock analyses: (1) system-wide deadlock: the entire system stops making pro-

0gress, (2) component-wide deadlock: A single component or set of components cannot make progress.

An analysis for system-wide deadlocks is built into TLA+ and can be activated with a simple check box.

Since some components intentionally remain in a finial state, component-wide deadlock analysis requires

the user to specify a list of components that should not have a deadlock. Based on this, we can generate

an LTL property to check for deadlocks. Generating properties for component-wide deadlock freedom

has a medium priority for this thesis proposal.

Liveness Properties: To ensure that a certain type of desired system behavior happens, such as

“eventually the planning component reaches the ready state”, liveness property verification is needed.

Since component states are specified directly in the TLA+ model, liveness properties can be specified

directly in TLC, e.g., “<>A_ready = true”. Eventually sending a message can be specified with the

message queue of the output port being non-empty, e.g., “<>(c_out /= «»)”. To specify that behavior

can always happen (again) after any given point in the execution of the system, the operator for always

eventually “[]<>” can be used. Since TLA+ allows to verify arbitrary LTL properties via TLC and there

will be a large variance of liveness properties to specify, we propose that users would specify their

properties directly in TLC and using built-in verifiers to check them. The necessary analysis capabilities

for these properties are implemented in TLA+ already and they do not require adjustments to the format

of the models.

Causal Reaction Properties: To prevent bugs such as missing or inconsistent connectors, lost

messages, or ignored inputs it is desirable to check properties that verify a causal relationship between an

action and its reaction, such as a input A results in eventually sending a response B. The corresponding

LTL property for this type of behavior is [](A => <>B). TLC offers easier syntax for this: A ~>B. Using
this type of syntax properties such as message A results in message B can be specified as: a_out /=
«» ~> c_in /= «». The necessary analysis capabilities for these properties are implemented in TLA+

already and they do not require adjustments to the format of the models.

37



Chapter 7 Model-based Analyses for Robots

7.2 Generation of PlusCal/TLA+ Models

Based on the inferred state machine models I propose to generate analyzable PlusCal/TLA+ models, such

as the one shown in Listing B.1.

Components are modeled as fair processes with each transition receiving a labeled action that contains

an if-statement with with the transition’s pre condition and the post conditions in the body. Input queues

and output queues are modeled as lists that are constrained in their length. Topics are modeled as processes

that take elements from the output queues and add them to all input queues of subscribers.

To model reactive triggers the pre-condition checks for the input queue being empty:

if base_waypoints_lattice_trajectory_gen ≠ <> then
Periodic triggers are modeled as action that do not have any preconditions besides the conditions state

and input conditions inferred by ROSInfer.
Ports aremodeled as sequences ofmessages fromwhich the component pulls messageswhen responding

to them as topic processes adding messages when a publisher published to the topic.

State variables are modeled as variables maintained by the process that models the corresponding

component and assigned to their initial values in the variable declaration.

7.3 Conclusions and Implications for the Proposal

This chapter has outlined my plan to show how statically and dynamically inferred component behavioral

models can be used to automatically find potential architecture misconfiguration bugs.c The last chapter

will describe how I propose to evaluate the effectiveness and practical usefulness of the overall approach

to provide the finial evidence for the thesis statement.
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8 End-To-End Evaluation

The goal of the end-to-end evaluation is to answer the following two high-level research questions:

RQ 1 (Effectiveness) Methods in Section 8.1

How effective is ROSInfer at finding realistic source-level behavioral architecture composition
bugs?

The static model inference of ROSInfer has been evaluated in Section 5.2 and an evaluation proposal

for dynamic inference is outlined in Section 6.3. This research question closes the gap between individual

pieces of ROSInfer to evaluate its end-to-end ability to find bugs in the source code. I propose to answer

this research question by injecting realistic bugs into the source code and checking how many can be

found in the inferred models. More details on the methodology is described in Section 8.1.

RQ 2 (Practicality) Methods in Section 8.2

How useful is ROSInfer in a practical setting?

I propose to answer this research question by comparing the performance of ROSInfer to typical

ROS developers. More details on the methodology is described in Section 8.2.

8.1 Measuring Effectiveness

To evaluate the effectiveness of finding bugs I propose to inject realistic bugs into the source code of

real-world ROS systems, run ROSInfer, TLA+ generation, and model-based analyses to identity potential

bugs, and compare the detected bugs with the ground truth.

Creating a Data Set of Real-World Bugs: Since there is no existing data set of behavioral architecture
composition bugs in ROS, I will need to create one as part of the research contribution. The first step in

this effort is to find existing bugs in open source systems. Analogously to the data set creation for the

evaluation of ROSDiscover described in Section 4.2, I will search GitHub issues, pull requests, and commit

messages for keywords that might indicate behavioral architecture composition bugs. The terminology

for these keywords can come from ROBUST [83], Paulo’s paper on ROSAnswers, conversations with ROS

developers, and search for other architectural terms, such as “indefinite waiting”, “fix mandatory input”,

“race condition”, “state bug”, “wrong state”, “wrong frequency”, “unexpected rate”, “fix rate”, “can’t keep

up”, “message loss”, “deadlock”, “fix queue size”, and “communication bug” as well as variations of these.

This data set will be published as artifact for further researchers to benchmark their approaches to find

behavioral architecture composition bugs.

So far, three bugs from the ROSDiscover data set are included in this data set.

Bug Injection: In the case that the data set of real-world bugs is not large enough and/or does not

cover a large enough variety of behavioral architecture composition bugs, I propose to manually inject

realistic bugs into the source code of real-world ROS systems. Real-world bugs are preferred, since they
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Chapter 8 End-To-End Evaluation

minimize the potential threat to validity of over-fitting and biasing the evaluation to implementation

patterns and specific instances of behavioral architecture composition bugs that ROSInfer was designed

to find. Therefore, bug inject will only be a back-up.

Data Analysis: To analyze the resulting data, I propose to quantitatively measure precision and

recall as both false positives and false negatives impact how effective ROSInfer can be in a practical

setting. Additionally, a qualitative root cause analysis of the kinds of false positives and false negatives
(analogous to the evaluation of ROSInfer described in Section 5.2) will provide further insights into

limitations and potential future work to improve the effectiveness of the approach.

8.2 Measuring Practicality

8.2.1 Sub-ResearchQuestions

To measure how useful ROSInfer is in a practical setting, I propose to answer the following sub-research

questions:

RQ 2.1 (Practicality)

How does ROSInfer ’s effectiveness compare to typical ROS developers in finding bugs?

This questions evaluates whether ROSInfer can find more or less bugs than a typical ROS developer.

RQ 2.2 (Practicality)

How does ROSInfer ’s efficiency compare to typical ROS developers in finding bugs?

RQ 2.3 (Practicality)

How useful to typical developers perceive mROSInfer to be in their development activities?

8.2.2 Setup

Participants will be provided with a git repository containing a real-world ROS system with one or more

bugs from the data set described in Section 8.1.

Then, we will ask the participants to list all architecture misconfiguration bugs that they can find

in the system while measuring the time it takes them to come to a conclusion.

Then we show them the output of the tool, ask them to locate the bug and ask for a description how

they would fix it (without having to code it).

A final survey will ask them questions about their experience, usefulness of the output, and importance

of the problem.

8.2.3 Recruiting

To recruit participants, I plan to ask master students in the RI master programs, pro-actively contact

attendees of at robotics conferences and developers in ROS-companies, such as NREC, Siemens, or PAL

Robotics and advertise the study on social media platforms.
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Measuring Practicality Section 8.2

Pre-existing knowledge for the study includes experience in building medium-size or large-size ROS 1

systems in C++, understanding of architectural composition, and basic understanding of architecture-level

bugs. The pre-required knowledge can be assessed with a short quiz of ROS concepts and behavioral

architecture composition bugs in minimal examples.

The study will need to compensate participants for the time spent in the form of Amazon git cards of a

value of around 20–40 USD per hour to value the expertise required for answering the survey.

8.2.4 Data Analysis

To answer RQ 2.1, I propose to measure the precision and recall of participants’ answers and compare

them to ROSInfer from RQ 1 as a way to compare the effectiveness.

Further, to get a rough estimate of the time comparison, I propose to report the time it took participants

to answer the questions. This metric is likely noisy and dependent on the expertise of participants.

Therefore, the order of magnitude of the difference is more important than the actual values.
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9 Timeline

I plan to finish dynamic inference by the end of Summer 2024, PlusCal/TLA+ generation by the end of

Fall 2024, and the end-to-end evaluation by the end of Spring 2025, so that I can defend by the end of

summer 2025.
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A ROS API Calls

This chapter describes architecturally-relevant APIs in ROS for reference.

Subscribe Call: ros::NodeHandle::subscribe(...)

The subscribe call defines a subscriber port. It creates and returns the newly created Subscriber object.

Advertise Call: ros::NodeHandle::advertise(...)

The advertise call defines a publisher port. It creates and returns the newly created a Publisher object.

Publish Call: ros::Publisher::publish(...)

The publish call implements the behavior of sending a message via publish-subscribe in ROS. It is called

on a Publisher object. Hence, to identify the output port at which the message is sent, the advertise call

that creates the Publisher object needs to be considered.

In some ROS nodes that are designed for dynamic configurations, publish calls can be called on method

parameters, requiring to track the call arguments. However, in most cases, publish is called directly on

the constructed objects.

Sleep Calls

There are two kinds of sleep calls: (1) constant-time sleep calls that sleep for the same amount of time every

time they are called, (2) filling-time sleep calls that sleep for the remainder of a periodic interval every

time they are called. Filling-time sleep calls allow the accurate static inference of the target frequency

(unless the execution of each cycle takes longer than the cycle time, resulting in a lower actual frequency)

while constant-time sleep calls can provide only an upper bound on the frequency, since execution times

of other statements are not captured.

C++, the most commonly used programming language by ROS projects, offers three common constant-

time sleep calls: usleep, sleep, and std::this_thread::sleep_for. The ROS framework offers

ros::Duration::sleep.
ROS offers two filling-time sleep calls: ros::NodeHandle::createTimer, which has a rate object

and callback as argument. The frequency is specified in the constructor of the Rate.

OK Call: ros::ok()

The API Call ros::ok() checks the status of the component. During normal operation of the node calls

to ros::ok() always return true. It returns false if and only if the node has been shutdown, signaling

that it should stop all ongoing computation. Therefore, it is often used in conditions of periodic behavior

to stop loops that would otherwise be endless loops.
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B Example Models

------------------------------- MODULE autoware10 -------------------------------
EXTENDS Sequences, Integers, TLC, FiniteSets
CONSTANTS Obj_reproj, Image_obj_tracked, Current_pose, Unknown, Data, NULL,

MaxQueue

ASSUME NULL ∉ Data

\* helper functions
SeqOf(set, n)==UNION {[1..m -> set] : m ∈ 0..n} \* generates all sequences no

longer than n consisting of elements in set
seq ⊕ elem==Append(seq, elem)

(*--fair algorithm polling
variables
image_obj_tracked = <>;
image_obj_tracked_obj_reproj = <>;
current_pose = <>;
current_pose_obj_reproj = <>;
obj_label_marker = <>;
obj_label = <>;
unknown = <>;
unknown_obj_reproj = <>;
obj_label_bounding_box = <>;

define
TypeInvariant==
image_obj_tracked ∈ SeqOf(Data, MaxQueue) ∧
image_obj_tracked_obj_reproj ∈ SeqOf(Data, MaxQueue) ∧
current_pose ∈ SeqOf(Data, MaxQueue) ∧
current_pose_obj_reproj ∈ SeqOf(Data, MaxQueue) ∧
obj_label_marker ∈ SeqOf(Data, MaxQueue) ∧
obj_label ∈ SeqOf(Data, MaxQueue) ∧
unknown ∈ SeqOf(Data, MaxQueue) ∧
unknown_obj_reproj ∈ SeqOf(Data, MaxQueue) ∧
obj_label_bounding_box ∈ SeqOf(Data, MaxQueue)
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Response==<>(obj_label_marker ≠ <>)
end define;

fair process obj_reproj ∈ Obj_reproj
variables
msg ∈ Data;
isReady_ndt_pose = FALSE;
isReady_obj_pos_xyz = FALSE;
ready_ = FALSE;

begin

image_obj_tracked_obj_reproj:
if image_obj_tracked_obj_reproj ≠ <> then
msg := Head(image_obj_tracked_obj_reproj);
image_obj_tracked_obj_reproj := Tail(image_obj_tracked_obj_reproj);
obj_label := obj_label ⊕ msg;
obj_label_marker := obj_label_marker ⊕ msg;
obj_label_bounding_box := obj_label_bounding_box ⊕ msg;

if ((ready_ ∧ isReady_obj_pos_xyz) ∧ (isReady_obj_pos_xyz ∧ isReady_ndt_pose))
then

isReady_ndt_pose := FALSE;
isReady_obj_pos_xyz := FALSE;

elsif ready_ then
isReady_obj_pos_xyz := TRUE;

end if;

end if;

current_pose_obj_reproj:
if current_pose_obj_reproj ≠ <> then
msg := Head(current_pose_obj_reproj);
current_pose_obj_reproj := Tail(current_pose_obj_reproj);
obj_label := obj_label ⊕ msg;
obj_label_marker := obj_label_marker ⊕ msg;
obj_label_bounding_box := obj_label_bounding_box ⊕ msg;

if (isReady_obj_pos_xyz ∧ (isReady_obj_pos_xyz ∧ isReady_ndt_pose)) then
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isReady_obj_pos_xyz := FALSE;
isReady_ndt_pose := FALSE;

elsif TRUE then
isReady_ndt_pose := TRUE;

end if;

end if;

unknown_obj_reproj:
if unknown_obj_reproj ≠ <> then
msg := Head(unknown_obj_reproj);
unknown_obj_reproj := Tail(unknown_obj_reproj);

if TRUE then
ready_ := TRUE;

end if;

end if;

end process;

fair process image_obj_tracked ∈ Image_obj_tracked

begin
Write:
if image_obj_tracked ≠ <> then
msg := Head(image_obj_tracked);
image_obj_tracked := Tail(image_obj_tracked);
image_obj_tracked_obj_reproj := image_obj_tracked_obj_reproj ⊕ msg;

end if;
end process;

fair process current_pose ∈ Current_pose

begin
Write:
if current_pose ≠ <> then
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msg := Head(current_pose);
current_pose := Tail(current_pose);
current_pose_obj_reproj := current_pose_obj_reproj ⊕ msg;

end if;
end process;

fair process unknown ∈ Unknown

begin
Write:
if unknown ≠ <> then
msg := Head(unknown);
unknown := Tail(unknown);
unknown_obj_reproj := unknown_obj_reproj ⊕ msg;

end if;
end process;

end algorithm; *)
====

Listing B.1: Example TLA+ Code
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BGlossary
Symbols

Rosbag: A tool that allows to record and replay messages published to topics in ROS. See

http://wiki.ros.org/rosbag.

Pages: 36

A
API: An Application Programming Interface (API) is a set of specifications that a software program

can follow to access and make use of the services and resources provided by another particular

software program that implements that API.

Pages: iii, 4, 5, 9, 14, 20, 23, 24, 26, 36, 47

AST: An Abstract Syntax Tree (AST) is a representation of source code that hierarchically splits

programing language constructs into parent-child relationships.

Pages: 24

B
Behavioral model: A behavioral model is an instance of the behavioral view. See Section 2.1.3.

Pages: 3, 4, 6

Behavioral view: The behavioral view, also known as dynamic view, expresses the behavior of

the system or its parts. It can describe input-output relationships for components, states, state

transitions, actions, and other behavioral properties such as timing. See Section 2.1.3.

Pages: 3, 7, 8, 10, 53

C
Component: A component is an independently deployable run-time unit of software (e.g.,

processes) that communicates with other components primarily via messages. See Section 2.1.2.

Pages: 7–11, 23–32, 35, 36, 38, 53, 54

Component-connector model: A component-connector model is an instance of the component-

connector view. See Section 2.1.2.

Pages: 3, 10, 13

Component-connector view: The component-connector view, also known as run-time

architecture, represents a structural configuration of the architecture at run time containing

components, connectors, and ports. See Section 2.1.2.

Pages: 7, 10, 53

Connector: . See Section 2.1.2.

Pages: 8, 36, 53

Constant-time sleep call: A constant-time sleep call sleeps the thread for the same amount of

time every time it is are called. See Appendix A for examples..

Pages: 47
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Controllability: In dynamic analysis of software, controllability describes the degree of effort

needed to re-create the execution conditions that should be analyzed via by controlling inputs,

state, and hardware conditions [28].

Pages: 35

CPU: Central Processing Unit.
Pages: 54

CUDA: Compute Unified Device Architecture (CUDA) is a Graphics Processing Unit (GPU)-based

parallel computing framework and API.

Pages: 20

D

Deployment view: The deployment view, also known as physical view, describes the hardware

configuration of a system. It maps components to processing units (e.g., Central Processing Units

(CPUs), GPUs, servers) and shows how processing units connected with each other via hardware

networks. See ??.
Pages: 10

F

Filling-time sleep call: A filling-time sleep calls sleeps the thread for the remainder of a periodic

interval every time they are called. See Appendix A for examples..

Pages: 47

G

GPU: Graphics Processing Unit.
Pages: 54

L

LTL: Linear Temporal Logic.

Pages: 11, 15

M

Module view: The module view, also known as code view, displays the software the way

programmers interact with the source code. It contains source code elements, such as packages,

classes, methods, or data entries and their relationships. See Section 2.1.1.

Pages: 7

N

Node: A node is a component in ROS. See Section 2.4.1.

Pages: 9, 10, 16, 20, 36, 47

O
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Observability: In dynamic analysis of software, observability describes the degree of effort needed

to take measurements of a running programs, such as direct outputs, indirect outputs, intermediate

exeuction steps, and quality attributes [28].

Pages: 35

P

Port: . See Section 2.1.2.

Pages: 3, 5, 35, 36, 38, 47, 53

Publish-subscribe: Publish-Subscribe is an asynchronous message sending connector that loosely

couples senders (i.e., publishers) from receivers (i.e., subscribers) via a know intermediary interface.

See Section 2.2.1.

Pages: 8, 9, 36, 47, 55

Publisher: A publisher is the role of the sender in the publish-subscribe style. It sends messages to

topics that forward them to every component that subscribed before the message was sent. See

Section 2.2.1.

Pages: 8, 20, 38, 47, 55

R

ROS: The Robot Operating System (ROS) is the most popular open-source framework for

component-based robotics systems. See Section 2.4.

Pages: iii, 3–6, 9, 10, 14, 16, 19, 20, 23, 26, 35, 36, 47

S

Subscriber: A subscriber is the role of the receiver in the publish-subscribe style. It after

it subscribed to a topics it receives all messages sent by the corresponding publishers. See

Section 2.2.1.

Pages: 8, 20, 47, 55

T

Topic: Topics is ROS implementations of the publish-subscribe style. They are represented as

strings. See Section 2.4.2.

Pages: 20, 23, 38, 55

U

UML: The Unified Modeling Language (UML) is a general-purpose modeling language that is

intended to provide a standard way to visualize the design of a system.

Pages: 7
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