Teaching How to Design Large-Scale Software
in a Multi-Team Project Course

Tobias Diirschmid
Carnegie Mellon University, Pittsburgh, PA, USA

Abstract—Designing software systems is an essential techni-
cal skill for professional software engineers. However, recent
graduates often lack important software design skills, such as
generating, effectively communicating, and evaluating design
options and collaborating across teams to build large systems.

In this paper, we present our experience designing and deliver-
ing a new course that teaches how to design large-scale software
systems via case-study-driven lectures and a project in which
multiple teams collaboratively build a complex software system.
We propose the GCE-paradigm (i.e., the process of iteratively
generating, communicating, and evaluating design options) as a
guiding framework to systematically teach software design.

Overall, the course has been well-received by the 17 students.
They particularly valued the use of real-world case studies and in-
class discussions. The multi-team project gave students insightful
learning opportunities on cross-team communication that are
rarely found in university education. Using interface descrip-
tions and test double components, students could successfully
integrate separately developed components. While most students’
performance improved throughout the semester, some students
continued to struggle with generating multiple viable alternatives
and clearly communicating them via appropriate abstractions.

Based on our lessons learned, we discuss recommendations
to improve the course. To allow other instructors to adopt or
improve our course, we will publish all teaching materials.

Index Terms—Software Design, Software Engineering, Teach-
ing, Education, Team Project, Case Studies, Constructivism

I. INTRODUCTION

Designing software systems is an essential technical soft-
ware engineering (SE) skill 3 |5, [72] that includes generation,
communication, and evaluation of design options and working
across teams to build complex systems [[19| 42, |60, |68].

However, recent graduates often lack important software
design skills, such as generating and comparing alternative
designs, communicating them effectively, and collaborating
across teams [10, 32} |63)]. Multi-national, multi-institutional
experiments have shown that the majority of graduating stu-
dents in computer science lack the skills to design software
systems [22| |50]. This gap between industry-needed compe-
tencies [3} 5} [72] and the design skills of recent graduates has
also been confirmed by surveys of software practitioners [3].

This skill gap motivates a larger emphasis on software
design education in universities [32, 33]. In many cases,
software design is taught as just a small part of an overall SE
course [3, 58, |70|]. However, general SE courses give students
little instruction and insufficient practice of software design
skills in projects that are large enough to expose students
to practical design challenges [[10}, 38, |59, |63[]. In the cases
in which software design is taught in a dedicated course,

Eunsuk Kang
Carnegie Mellon University, Pittsburgh, PA, USA

learning objectives focus on design patterns and architectural
styles [59]], which are important concepts for producing high-
quality design artifacts. However, in contrast to design as
an artifact, design as an activity [|19] is rarely taught as a
primary course objective [7, [59]]. Therefore, students often
lack the skills and mindset to systematically design complex
software [[10}, 132}, |63].

Teaching software design activities is challenging. Instruc-
tors have to find the right balance between teaching theoretical
knowledge while also allowing students to gain enough prac-
tical experience with applying the taught design techniques to
a realistic and sufficiently complex system [28, 38} 48, 59|
71]]. In small software projects, students do not experience
the challenges and learning opportunities that arise when no
single person can fully understand the entire system [17,
18], such as compatibility of independently developed com-
ponents [30], cross-team communication, component respon-
sibility assignments, and workload distribution. Therefore, we
believe software design is most effectively taught with a large-
scale multi-team project that closely simulates the complexity
and challenges of professional software development projects.

In this paper, we present our experience designing and de-
livering a new course that teaches undergraduate and graduate
students how to design large-scale software systems via case-
study-driven lectures and a semester-long multi-team project.
We propose the “GCE-paradigm” (i.e., the process of itera-
tively generating, communicating, and evaluating design op-
tions) as a guiding framework to systematically teach software
design activities. In lectures, students learn design principles
based on positive and negative real-world case studies using
constructivism learning theory [6] and active learning [12].
Further, we teach multi-team software design using interface
descriptions and test double components. In the course project,
student teams collaboratively design, implement, test, and inte-
grate a large-scale multi-service web application and describe
important design decisions in milestone reports.

Based on our lessons learned, we discuss recommendations
to improve the course design. Overall, the course was well-
received by students. 17 students across 4 teams successfully
designed and implemented a complex system. Most students’
performance in design activities improved throughout the
semester. However, some students continued to struggle with
generating multiple viable alternatives and clearly communi-
cating them via appropriate abstractions. This suggests that
students need more formative assessments and more concrete
guidelines for these design activities.



II. RELATED WORK
A. Software Design Courses

Due to the importance of software design skills, courses on
software design have been taught for decades [59, |67].

Lecture-focused Courses: Many software design courses
in the literature focus on lecture-based learning without a
major project component [59]. Some courses focus on teaching
software design based on design patterns and remain closer
to a source code [41, [75]. Other courses focus on high-
level component interactions, architectural styles, and quality
attributes [31} |52]]. While these courses teach important skills
that are relevant to producing good design artifacts, to the best
of our knowledge, only one course at UC Irvine [7] teaches
software design primarily as a systematic activity [[19].

Team-Project-based Courses: Some software design
courses include a major team-project component [59, |67]]. For
example, in a course taught at Murdoch University, students
practice modular decomposition and learn to specify compo-
nent interfaces in teams of six [4} |40]]. UC Irvine includes two
team projects in their software course during which students
design and implement a system in teams of 14 students [/7]].
Courses taught at the University of Queensland [14]] and
Beihang University [79] provide students with open-source
systems that students should read, model, and extend. A com-
mon domain for team projects in software design courses is
game projects [[76]. In existing software design courses student
teams generally work individually, rather than collaboratively
developing a system across teams. In contrast, our course
allows students to experience cross-team communication chal-
lenges and a more realistic development context in which
students have to integrate components built by other teams.

B. Multi-Team Courses

The teaching concept of using multiple interacting teams in
SE education has been proposed and implemented in courses
not focused on software design before.

Agile Processes: A course on scaling Scrum, which has
been taught for multiple years at Hasso Plattner Institute,
lets students build a web application with multiple interacting
teams [53| |54)]. The course teaches the Scrum process and
modern SE practices (e.g., test-driven development, behavior-
driven development, continuous integration, and version con-
trol) in a realistic environment with self-organizing teams
in a semester-long project [54]. Students receive the role
of either Scrum Master, Product Owner, or developer while
customers are simulated by the teaching team [53]]. Students
learn by making decisions about their development process
autonomously and reflecting on their decisions after each
sprint [54]. The multi-team project of our course has been
partially inspired by this course. Similar courses are taught at
the College of William and Mary [[17, |L8], the University of
Helsinki [51]], and the University of Victoria [47]. However, in
contrast to multi-team courses on Agile processes, the learning
objectives of our course focus on software design activities.
This creates additional challenges, as the time available for

teaching development processes and interactions is more lim-
ited in a software design course.

Global Software Development: Some courses teach even
harder-to-practice skills of developing a product via collabo-
rating, globally distributed teams [13} |16} 20, [37]]. However,
similar to the courses on Agile processes, they do not specif-
ically focus their learning objectives on software design.

III. COURSE DESIGN OVERVIEW

The course presented in this paper is a full-semester elective
aimed at graduate and undergraduate students in computer
science and majors related to computer science (e.g., in-
formation systems). Prerequisite knowledge of the course
included intermediate programming skills and experience with
developing and testing medium-sized programs. The course
builds on the programming skills that students have obtained
through previously taken courses, internships, or other indus-
try experience and teaches them the highly demanded skills
of designing large-scale software systems by making trade-
offs between different quality attributes, considering different
design alternatives, and communicating design using appropri-
ate models. The course consists of three major instructional
methods:

1) Active-learning-style lectures using real-world case stud-
ies to teach design principles based on constructivism
learning theory [6] (Section TV).

2) A semester-long multi-team project in which all teams
collectively design, implement, and integrate a system
composed of different services and describe their design

decisions in five milestone reports (Section V).

3) Three individual homework assignments during which

students practice skills taught in the lectures (Section VI)).

A. Learning Objectives (LOs)

As few existing courses teach software design primarily as
an activity, deciding what to teach in this course is one of
the contributions of this paper. We decided that the following
learning objectives are most important to teach an engineering
mindset [19] of software design.

Requirements analysis and specification are important skills
for all software engineers [3| |5, |39, |63} |66], as prioritized
requirements are the main drivers of software design [38}, 59].
Therefore, a software design course should teach students how
to elicit, specify, and prioritize requirements.

[LO R (Requirements)

Students should learn to: Identify, describe, and prioritize
relevant requirements for a given design problem.

Bloom’s Level [1]: Analyzing |

Starting from requirements, design space exploration via
constructive thinking and creative problem solving is the next
required software design skill [19} |55]. Since considering mul-
tiple design alternatives is likely to lead to a better design [72],
a software design course should teach students how to generate
multiple viable solutions.



| LO G (Generate) Bloom’s Level [[1]]: Creatingw Date Topic LOs
Students should learn to: Generate multiple viable de- L1 Introduction and Motivation
sign solutions that appropriately satisfy the trade-offs Eg PDroblemAzs't SOFUOH Space Lg% ILO ¢
. . es1gn stractions
between given requirements. L4  Quality Attributes and Trade-offs [CO R}[LO E}[LO
L . LS Design S Explorati O G
Modeling is a central aspect of design [[19] [24, |46l |60]] and L6 Gzreg}gtin%acgesig (X?t:r)r?atives 0C
essential for collaborative design [42] |68]]. Hence, we should L7  Design for Change ODPCOEILOG
teach students to effectively communicate design ideas. L8  Design for Change O DP| |ILO EL |LO G|
3 5 3 L9 Design for Interoperabilit O DP| [LO C] |LO Ei
| LO C (Communicate) Bloom’s Level [[1]]: Creatmg} L 10 Design for Testabri)lity y o)z linenzlinexe
Students should learn to: Communicate the essential as- L 11 Design with Reuse O DR |LO G |[LO E
pects of design solutions by choosing and visualizing L 12 &?&Z‘r‘ﬁlﬂg Designs LO ELO ¢
appropriate abstractions and models. L 13  Cross-team Interface Design LO MT|
. . . . . . . L 14 Design for Reuse O DP||LO E} |LO G
Judging the quality of design options is essential to improve L 15 Design for Scalability ODP O oG
designs and assess requirements satisfaction [45]. Therefore, L 16 Design for Scalability O DP| [LO E| ILO G
a software design course should teach design evaluation. L 17  Design for Robustness O DR |LO E||[LO G
L 18 Design for Robustness O DPl|LO E} [LO G
| LO E (Evaluate) Bloom’s Level [1]]: Evaluating} L 19 Desén Process:s 0P
Students should learn to: Evaluate design solutions based L 20  Design for Security O DRILO BILO Gi
. . . . o . L 21 Design for Usability O DP|LO E} [LO G
on their satisfaction of common design principles and 122 Ethicalland) ResponsiblelDesign 5P 0T
trade-offs between different quality attributes. L 23 Designing Al-based Systems ODPILOL
] o ] ] ] L 24  Course Review
Design decisions have a long-lasting impact on quality Project Presentations LO C

attributes, such as changeability, interoperability, reusability,
robustness, scalability, and testability [48] |69, [77, [80]. To
build on existing knowledge and experiences, teaching design
principles can guide students to generate and evaluate design
options for various quality attributes [46, |61].

| LO DP (Design Principles) Bloom’s Level [1]: Applyingw

Students should learn to: Describe, recognize, and apply
principles for: Design for reuse, design with reuse, design
for change, design for robustness, design for testability,
design for interoperability, and design for scalability.

The software design process should be adjusted depending
on the context, the overall amount of risk, and the types of
risks in the domain [23]. Therefore, a software design course
should teach students how to adjust the design process to fit
into Agile, plan-driven, and risk-driven development processes
across different domains.

| LO P (Process)
Students should learn to: Determine and explain how

to adapt a software design process to fit different
development contexts and domains.

Bloom’s Level [1]]: Applyingw

Finally, to build complex, large-scale software systems,
skills of cross-team design and development are essential, as
most modern software is built by more than one team [9, |10}
63, |68]]. Thus, it is critical for a software design course to
teach students how to collaborate across teams.

| LO MT (Multi-Team)

Bloom’s Level [[1]]: Creating}

Students should learn to: Collaborate with other teams
to design, develop, and integrate individually developed
components into a complex system.

Final Exam

TABLE I: Lecture topics and addressed learning objectives.

IV. LECTURE DESIGN

This section describes how the lectures in this course teach
design primarily as an activity based on real-world case studies
and constructivism learning theory. The list of lectures and
learning objectives that they address is shown in

A. Teaching Design as an Activity via the GCE-Paradigm

We propose the “GCE-paradigm” as a guiding framework
for systematically teaching software design activities. The
GCE-paradigm describes software design as the process of
iteratively generating, communicating, and evaluating de-
sign options based on requirements. We introduce the GCE-
paradigm via lectures and in-class activities on the individual
design activities. Then, we teach how to combine these activ-
ities in an iterative design process while providing specific
instruction on designing for individual quality attributes in
“design for X” lectures. To help students connect new knowl-
edge to the respective design activity, each slide highlights the
associated activity in the cycle of the GCE-paradigm.

Requirements Analysis: To understand the problem and
context of design tasks, we teach students to identify important
requirements and domain assumptions (LO R). In Lecture 2,
we illustrate the importance of domain assumptions based on
the case study of the Lufthansa 2904 runway crash (caused by
the assumption that the plane is on the ground if and only if
the wheels are spinning, which was violated by a wet runway).
We then ask students to identify important requirements and
assumptions across different domains.



Communicating Designs via Abstractions: To support
design collaboration and evaluation, we teach how to commu-
nicate designs using appropriate abstractions (CO_C). Inter-
leaved [25] throughout Lectures 2, 3, 4, and 9, we introduce
context diagrams, component diagrams, sequence diagrams,
data models, interface descriptions, and Class-Responsibility-
Collaboration (CRC) cards. As a use of spaced repetition [44],
we use these abstractions in following the lectures, recitations,
homeworks, and project milestones.

Generating Design Alternatives: In Lecture 6, we survey
techniques that help generate design options (LO_G). First,
we motivate the importance of thinking of different design
alternatives, as this is likely to result in a better design [[72].
Then, we teach brainstorming techniques (e.g., writing ideas
on post-its, clustering, combining ideas, avoiding anchoring),
which students practice during an in-class exercise. Based
on the thereby introduced pattern of model-view-controller,
we teach that design generation often starts with building on
existing designs described in patterns.

Evaluating Design via Quality Attribute Trade-offs: As
design often has to compromise between multiple conflicting
objectives, we teach students how to identify and evaluate im-
portant quality attribute dimensions (CO E). In Lecture 4, we
introduce quality attributes based on the connectors, publish-
subscribe and call return, which can be used to implement the
same functionality with different quality attributes. Thereby,
we illustrate that design decisions can impact extensibility, ro-
bustness, and understandability. We then teach how to specify
quality attribute requirements via measurable scenarios and
show examples of trade-offs and synergies between quality
attributes. In Lecture 12, we teach how to review designs
via adversarial thinking and how to argue for design options.
Via spaced repetition [44], we ask students throughout many
lectures to identify important quality attribute dimensions,
specify measurable scenarios, and evaluate design options.

Design Process: To convey the principle that the amount
of design effort should depend on the criticality of the system
being developed (LO P), we teach a risk-driven design ap-
proach [23]] and show how this approach fits into Agile as well
as more waterfall-like software development processes. Then,
we conduct in-class activities to identify relevant risks for
different domains (e.g., online shops, games, medical software,
spacecraft systems, startups, and social media systems). Fur-
ther, we teach the human aspects of software design [|68, 73] by
contrasting intuitive decision-making with rational decision-
making [62], discussing bounded rationality [43]], and empha-
sizing that design is a collaborative hands-on activity [73].

Experience: At the end of the semester, we conducted
an anonymous survey to request feedback on the course,
including the lectures. 13 out of 17 students responded.

The students responded positively to the lectures. To the
question “Which topics/lectures were valuable and should
be kept for future versions of the course?” four students
responded with “all” and two students responded with all
“design for X lectures. Lectures that students enjoyed in
particular were the lectures on scalability (five students), reuse

(three students), interoperability (two students), testability
(two students), and changeability (two students). One student
wrote: “I think all the theoretical portion of the lectures were
very well structured and should be all kept. Like this course
is one of the best logically flowing courses I have taken at
cMuU.”

No majority opinion emerged on which topics should be
covered more/less. In response to the question “To improve the
course, which topics should we cover additionally, cover more,
or cover less?” students asked for more real-world examples
in lectures (two students); more content on scalability (two
students); and more content on testability, security, robustness,
and quality attributes broadly (one student each).

Lesson Learned 1 (Design as an Activity) Lectures

Lectures on how to design large-scale software systems

via the GCE-paradigm were well-received.

¢ Include a mix of lectures on individual design activi-
ties (requirements specification, design generation, design
communication via abstractions, design evaluation, and
design process adjustment) and on “design for X”

o To provide students with multiple practice opportunities,
apply spaced repetition [44] by including the major
activities in each “design for X” lecture while explicitly
marking the corresponding slides with the activity name.

.

B. Real-World Case Studies

Case studies have been shown to be an effective teaching
method in general SE education [29 65| (74} 78] and have also
been proposed for software design education in particular [[15].
To convey the need for the design principles taught in the
lectures (CO_DP), we instructed them based on the follow-
ing real-world case studies of well-known software failures
and success stories, some of which we assigned as required
readings before the corresponding lecture.

Global Distribution System (GDS) In the lecture on design
for interoperability, we used GD (the interface standard
that is used by airlines and booking systems to transfer
data between independently developed systems) as a
case study for a multi-decade success of hundreds of
interoperating systems (but with limited changeability).

Mars Climate Orbiter After discussing techniques to
achieve syntactic interoperability, we used the Mars
Climate Orbiter [11] case study to illustrate the
importance of semantic interoperability (a mix of
imperial units and metric units caused the system to
crash for a multi-million dollar loss).

Netflix’s Simian Army: In the design for testability lecture,
we used the Simian Army by Netflix as a positive exam-
ple for quality attribute testing of large-scale systems [8]].

Ariane 5 Rocket Launch Failure: In the design with reuse
lecture, the well-known Ariane 5 failure (caused by an
invalid assumption about the maximum velocity in the
inertial reference system that was ported from Ariane 4)

Uhttps://www.youtube.com/watch?v=1-m_Jjse-cs


https://www.youtube.com/watch?v=1-m_Jjse-cs

is used to illustrate the importance of identifying and
checking assumptions made by reused components [49].

npm left-pad: In the design with reuse lecture, the
suddenly unavailable, but widely reused npm package
left —pa with trivial implementation was used to mo-
tivate the design principle to strive for few dependencies.

Heartbleed: In the design with reuse lecture, the Heartbleed
buf] (a security vulnerability in OpenSSL) motivated the
importance of updating critical dependencies.

Twitter: In the design for scalability lecture, Twitte (now X)
was used as a case study to teach approaches for scaling
a system based on estimated demand.

Experience: Overall, we believe the case studies were valu-
able for conveying the key course concepts and maintaining
student engagement. We collected student feedback on the
course in a mid-semester course feedback focus group session.
To ensure students can speak freely and to anonymize all
responses, the feedback was collected by an outside consul-
tant who was not part of the course teaching team. In that
session, all students unanimously agreed that the real-world
case studies helped them learn, because “examples of design
scenarios and code snippets make core ideas more concrete
and easier to understand” and “use of real-world examples in
lecture[s] ties concepts to reality, helps retain info (e.g. the
npm library)”. As instructors, we also noticed an increased
level of student attention and participation specifically when
discussing the case studies during lectures.

Lesson Learned 2 (Real-World Case Studies) Lectures

The use of real-world case studies of positive and
negative examples for design principles has been well-
received for teaching design principles (LO DP) and the
software design process in this course.

o For complex case studies, such as GDS and Netflix’s
Simian Army, assign required reading with a reading quiz
before the lecture, so that all students are familiar with
the important details of the case study.

J

C. Teaching Software Design Principles using Constructivism

In contrast to directly presenting design principles to stu-
dents up-front, in this course, we let students themselves
actively construct design principles by generalizing from real-
world case studies of positive and negative examples (LO DP).
Delivering lectures centered around student participation uses
active learning [12], which has been shown to significantly
improve learning outcomes in computer science and other
fields [|27, 35} |36]]. Letting students construct design principles
from examples is rooted in constructivism learning theory,
which posits that teachers cannot simply transmit knowledge
to students, but students need to actively construct knowledge
in their own minds [6]. According to constructivism learning

Zhttps://www.davidhaney.io/npm-left- pad- have- we-forgotten-how- to- program/.

3https://heartbleed.com/
4https://blog.x.com/engineering/en_us/a/2013/
new-tweets-per-second-record-and-how

theory, students learn best by discovering information, check-
ing new information against old information, and revising rules
when they do not longer apply [6]. Based on the best available
evidence in educational literature, constructivism improves
retention [64]], students’ academic success [64]], and meta-
cognitive skills [57].

As software design principles are abstract concepts for
which it is important to internalize why they exist and what
their limitations are, we believe a constructivist teaching
approach is most effective. By letting students follow the
step-by-step process of formulating design principles based
on positive and negative examples, we believe students gain
a deeper understanding of how the design principles impact
system design, why they often improve design, and in which
cases they would not improve design.

For example, in the design for interoperability lecture, we
use a case study based on GDS, a system that is used by nearly
all airlines and booking systems to exchange data. First, we ask
the students to discuss in small groups what specifically makes
this example so successful and share their thoughts in the class.
Second, we ask them to generalize their insights toward design
principles that apply to future projects, which they described
as creating a shared data format or an interface between
systems. This is a part of the final design principle, but still
missing an important element. Hence, we show the students
the example of the Mars Climate Orbiter failure [[11] (which
resulted from the inconsistent use of metric and imperial units)
to demonstrate that just having syntactic interoperability alone
is not sufficient, but that semantics have to be defined precisely
as well. Students appropriately inferred the design principle
of documenting the meaning and units of interfaces. Finally,
we let students describe the shortcomings of GDS. They
correctly identified limited changeability of the interface that is
implemented across hundreds of systems. In doing so, students
identified and addressed the concrete challenges, generalized
them, and constructed the design principles that the lecture was
intended to teach. We follow the same approach to teaching
design principles throughout the course.

To identify whether non-participating students also under-
stood the design principles, we end each lecture with an exit
ticket [26] (a digital assignment in which students are asked
to summarize the lecture’s main message in their own words
and apply it to a small, different example).

Experience: In the mid-semester focus group, 46 % of
students agreed that in-class discussions helped them learn,
since “in class discussions help us think and reason over
content” and facilitate “reiteration of ideas; students have
different perspectives”. Considering that students often subjec-
tively under-value the objective effectiveness of active learning
techniques [21]], these results suggest that constructivism likely
supported the students’ learning of design principles. Based on
the quote “/we] don’t know what they expect as answers when
they put us into discussion groups”, we identify the clarity of
questions as a potential challenge of the technique, as students
might not have always known what type of answer was
expected of them. Finally, all students agreed that exit tickets


https://www.davidhaney.io/npm-left-pad-have-we-forgotten-how-to-program/
https://heartbleed.com/
https://blog.x.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how
https://blog.x.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how

helped them learn, because “exit tickets help us reconsider
what we learned in the class right after class”.

Lesson Learned 3 (Constructivism) Lectures

The use of constructivism for teaching design principles

was overall well-received in this course.

o Give students 2 -5 min of silent thinking and small-group
discussions before discussing with the whole class.

e Soon after describing design principles, give students
another problem to practice applying the principles in
recitations or homework.

o To give students an idea of what type of answer is
expected, give them examples of answers to a similar
question that they are already familiar with.

o At the end of each lecture, include an exit ticket with
one summary task and one small task for applying the
learned techniques to a different example.

V. MULTI-TEAM PROJECT

While teamwork is one of the most important soft skills in
professional software development [3]], graduates in computer
science often lack the skill to collaborate across teams [|10,
63]] or work on large projects [63]. To let students practice
collaborative software design in a realistic context, in which
no single developer fully understands all components, we
decided to include a large-scale multi-team project in this
course (LO_MT). In the project, each team developed its
own medical appointment scheduling app and one of four
collaborating services. The medical scheduling app should
allow users to book appointment slots, see their results,
and receive quarantine requests. The healthcare administra-
tor service should let healthcare professionals enter patients’
test results and other medical data. The policymaker service
should allow government officials to modify the policy that
determines whether and for how long a patient should undergo
quarantine. The central database service provides storage and
retrieval of patient information across multiple scheduling
apps. The public information service should allow users to
view aggregated statistics). The teams were eventually asked
to integrate their scheduling app and service with other teams’
services.

The decision to let students collaboratively design and
develop a large-scale system comes with unique challenges
that should be addressed by course design to ensure students
focus their time and effort on the main learning objectives
and can gain a mostly positive experience with the design
techniques. These major challenges include:

o Challenges of cross-team communication [47], which we
address by letting teams pick a dedicated member to be
responsible for cross-team communication

« Potentially incompatible interfaces of individually devel-
oped services, which we address using interface descrip-
tions

o Challenges of testing services while dependent-on ser-
vices have not been implemented, which we address using

test double components (Section V-CJ)

To better support students with the project, we offered
weekly project office hours (15min slots per team) during
which students could present their progress, ask clarification
questions, and receive targeted feedback from instructors.

Experience: Students particularly valued the weekly project
office hours, with quotes such as “I really gained a lot
from your feedback and discussion with you during the office
hours. It enhanced my learning and thinking about previous
or undergoing milestones.”. The four teams built a system
with a total size of 19.5 KLOC. This amounts to 1.15 KLOC
per student on average. Overall, the developed system was
functionally correct, and services integrated well with each
other. The course project provided many insightful learning
opportunities, which are discussed in the following sections.

A. Cross-Team Communicator

As identified in previous work on multi-project SE
courses [17, 18, 47]], communication between teams is a major
challenge. To reduce communication overhead between teams
(LO MT)) we decided to use class time for cross-team com-
munication, provided a shared Slack channel for cross-team
communication, and dedicated a cross-team communicator
role for each team. Cross-team communicators should serve
as interfaces of the team and represent the wishes and needs
of their team. When multiple teams need to make decisions
together, instead of all students meeting, discussions can be
limited to only cross-team communicators.

Experience: We believe some teams did not pick the ideal
person to serve as the cross-team communicator. During the
initial design of the high-level architecture, cross-team com-
municators met to assign component responsibilities. As some
teams picked students who were less involved in the team’s
technical design discussions as cross-team communicators,
they did not fully understand the technical implications of
these decisions on the team’s workload and required technical
expertise. This led to unpleasant surprises when the students
learned that their cross-team communicator agreed to them
working on tasks that they did not feel equipped to work on
in the given time frame, requiring a new meeting to redesign
the system’s overall architecture.

Lesson Learned 4 (Cross-Team Communicator) Project

The effectiveness of cross-team communicators depends
on how well they can evaluate design trade-offs and how
well they know the skill set of their team.

o To reduce the risks of multi-team challenges (LO MT)),
let teams pick a cross-team communication that will serve
as a facade of the team and interface with other teams.

¢ Clearly describe the responsibilities and desired traits of
a cross-team communicator.

o Ensure that cross-team communicator is not a role that
teams assign to the member who has not contributed
enough yet, but a role that should be given to a student
who is prepared to represent the team’s needs and wishes
in important technical design decisions.




B. Service Interface Description

To give students the experience of building a component that
is used by other teams and using components developed by
other teams (LO MT)), we let teams describe OpenAPI spec-
ifications describing syntax and semantics of their interfaces
(CO O) and review each others’ interfaces (CO_E).

Experience: Students had only a few integration issues.
Considering that each service was developed individually and
most students experienced a large-scale development project
with multiple teams for the first time, we were surprised by the
high interface compatibility between the services. We believe
interface descriptions contributed to this success.

Lesson Learned 5 (Interface Descriptions) Project

Interface descriptions likely helped students indepen-

dently develop compatible services (LO MT).
o As part of the project milestone in which teams design

their individual services (Milestone 3)), include a task for
students to precisely specify interface descriptions.

« To increase the probability of major compatibility issues
being caught before implementation, ask student teams to
give each other feedback on their interface descriptions.

J

C. Test Double Components

While all teams develop their own services, dependent-on-
services are not immediately available for testing. To address
this challenge and to allow students to simulate data sent from
other components (CO MT)), we taught students to implement
test double components (components that mimic the interface
of a required service to control indirect inputs or verify indirect
outputs [56]]) based on interface specifications in the design
for testability lecture. During the project, we asked students
to implement test doubles for dependent-on components.

Experience: Test doubles helped students find some, but
not all, bugs before integration. Students also mentioned that
in the project, test double components helped “isolating the
influence of external components”. Many teams implemented
test doubles via conditional logic within their components,
rather than as a separate HTTP-communicating component,
which impeded replacing them with real components later.

Lesson Learned 6 (Test Double Components) Project

Test double components helped students independently

develop and integrate services (LO MT).

o To ease replacing test double components with the real
components, recommend students to implement test dou-
ble components by mocking HTTP messages rather than
simply mocking functions inside their own component.

o To simplify implementation tasks, point students to li-
braries and frameworks that inject HTTP messages.

D. Milestone Reports

Many companies, such as Google, use Design Docs or
other architecture decision records [2] to describe their impor-
tant design decisions [81]. Students practiced writing similar

documents in milestone reports for which we asked them
to generate (LO GJ), communicate (LO C]), and evaluate
(LO E) multiple design options for project tasks. The following
sections describe each milestone and our experience.

Milestone 1 (Domain Modeling & Initial System Design)

In the first milestone, students were given the description
of a small design problem (designing a medical appointment
scheduling app). Based on the given requirements and context,
students were asked to model a problem domain (LO_C),
identify important quality attribute requirements (CO R)), and
describe a first high-level design solution (LO G| and [LO C).

Experience: In an end-of-semester survey asking for feed-
back on every milestone, virtually all students said this mile-
stone was “Good” or “Great” and spent less time on the
milestone than we anticipated. Based on the submitted reports,
students made fewer design decisions (especially on the choice
of technologies and web frameworks) than we anticipated.
Therefore, we recommend including more mandatory ques-
tions on particularly important decisions so that more design
decisions are made in this milestone.

Milestone 2 (First Prototype Development)

In the second milestone, students should refine (CO_G),
model (CLO_C), and implement the design they described
in implement tests to evaluate the end-to-end
functionality (LO E)), and reflect on how the design changed
and which other alternatives options they considered (LO_G).

Experience: Students took more time for this milestone
than we anticipated, requiring us to extend the milestone by
one week. In the end-of-semester survey, many students said
“More time should be given to this milestone because ... some
of the members in the group are still in the learning stage
of some frontend/backend framework.”. Furthermore, due to
the higher workload of picking and learning a framework,
students’ time efforts shifted more towards implementation
than design, leaving less time to consider alternatives and
evaluate the impact of implementation decisions on the system
design [48]. Providing more implementation support, specifi-
cally on frameworks that might be useful for the project, might
help address this issue.

Lesson Learned 7 (Implementation Support) Project

The relative portion of project time spent on coding
rather than design was higher than desired, resulting in
students investing less time into the main LOs.

o To reduce the time students spend on coding and allow
them to focus more on design activities, include coding
templates that help students implement their systems
more efficiently.

o Link tutorials to common frameworks and libraries.

o Include a recitation at the beginning of the course that
introduces commonly used code generation techniques.




Milestone 3 (Design for Changeability & Interoperability)

In the third milestone, students were first introduced to the
four services that they were going to design and implement
to interoperate with each other. The milestone provides a
description of the functionality of each service as well as tips
for cross-team collaboration via cross-team channels and a
dedicated [cross-team communicatorl Based on this description
and service assignment per team, students are asked to design
their service (CLO_G), model it using [interface descriptions]
(CO C), and collaborate with other teams to ensure compatibil-
ity (CO MT). To further support service compatibility, students
are asked to design for two of the most central
services. Students are also asked to re-design their appointment
scheduling app to support certain future changes (LO G) and
add tests to evaluate the functionality (CO E). In a design
reflection students should report on design decisions they made
during interface design, the changes they made and describe
a change impact analysis of two potential changes.

Experience: Students had major discussions and disagree-
ments, which increased the workload of the milestone while
providing insightful learning opportunities. We recommend
providing multiple opportunities for students to have cross-
team discussions in recitations or setting some lecture time
aside for this, as some students mentioned they had ‘“not
enough time to discuss design decisions with other students”.

Milestone 4 (Service Development & Integration)

In the first part of the fourth milestone, we asked teams to
implement their services, while collaborating with other teams
to ensure compatibility (CO MT)), and implement test doubles
for adjacent services. Then they should deploy their services
and provide other teams with the URL and port of their service
instance. In the second part, students should integrate their
services by replacing the test double components with the real
deployed services of other teams. Then they should perform
rigorous integration testing to evaluate the functionality of the
overall system (CO E). In a design reflection students should
report on the design principles they used (LO DP), how they
reused existing libraries, how cross-team collaboration affected
their design decisions, and how starting from a fixed interface
impacted their implementation.

Experience: The integration of services went largely
smoothly. The most common integration issues were related to
different capitalization and the use of dashes in data formats
that resulted from interface changes that were not explicitly
communicated but were easy to fix. In the end-of-semester
survey, students mentioned this milestone “helped understand
teamwork and how to collaboratively work with others”.

Milestone 5 (Robustness Testing)

In the last milestone each team is assigned the service of
another team for which they should conduct intense robustness
testing by trying to break the service (LO E). They should
report their findings to the team that developed the service. In
an optional task, students were asked to describe at least two
design options for at least two of the issues found by other

teams and describe the improved designs (LO_G] and [LO C).
Due to time limitations and due to this task strongly relying on
the findings of other teams this task only gave bonus points.
However, all teams completed this optional task.
Experience: Students thoroughly enjoyed breaking the ser-
vices of other teams and said it was “useful to understand
what issues a system can potentially face and what could be
potential loopholes”. As students spend less time on this than
we expected, expanding the milestone by asking the students
to identify a large variety of issues (e.g., performance, cor-
rectness, availability, security) is one potential improvement.

E. Assessment of Milestone Report Submissions

Asking students to submit multiple written reports on the
progress of their project lets students receive constructive
feedback and observe their own growth [34]. The main short-
comings of submissions were related to [LO G| and

The discussion of design alternatives was often quite su-
perficial. In some cases, students just described their final
design without discussing potential alternatives. In other cases,
students described alternative designs that clearly would not
satisfy the requirements and thereby missed the opportunities
to meaningfully discuss design trade-offs.

The models of design solutions often did not communicate
the essential aspects of the corresponding design. In many
cases, the textual arguments of students were largely discon-
nected from the presented diagrams, suggesting that students
did not sufficiently consider what aspects of their design
should be communicated at which level of detail. In other
cases, models were too ambiguous or unclear.

We allowed students to redo some milestones to improve
their design discussions. We saw significant growth in redone
milestones, later milestones, and during final presentations,
suggesting that feedback helped students improve.

Lesson Learned 8 (Milestone Reports) Project

Milestone reports have helped assess students’ progress

and their satisfaction of learning objectives and have

been great opportunities to provide targeted feedback

to teams in this course.

« To allow students to apply feedback in the next milestone,
try to grade submissions quickly.

o Allow students to redo some milestone reports for an
improved grade to incentivize students to take provided
feedback seriously.

VI. HOMEWORK ASSIGNMENTS

This section describes our design and experience of com-
plementing the project with individual homework assignments.

A. HWI - Domain and Design Modeling

The first homework is designed to let students practice do-

main analysis (CO R) and modeling (CO C). The homework is
scheduled so that students receive feedback on this homework

before working on the first project milestone.



In the homework, students were presented with a case study
of a home security system and asked to model the system
using a context model, component diagram, data model, and
sequence diagram. Students should also describe assumptions
made about the domain and design decisions they made.

Experience: In an end-of-semester survey students overall
liked the homework while mentioning a higher-than-expected
workload (e.g., “This was useful and a must learn skill for
design documentation. Although it took me around 6 —7 hours
as opposed to 2—3 hours.”). Most submissions demonstrated
accomplishment of the learning objectives. The most common
mistake was that 18 % of submissions included domain entities
in component diagrams rather than context diagrams.

B. HW2 - Design for Reuse

The second homework practiced generating multiple design
alternatives (CO_G)), communicating them using interface

descriptions (LO_C), evaluating them for reusability (CO_E),
and describing the design principles they support (LO DP).

Students were tasked to evaluate an open-source package for
reusability by identifying its assumptions and reuse context,
describing design principles that contribute to its reusability,
and describing reuse scenarios in which reusing it would be
appropriate and inappropriate. Then, students were asked to
improve the package design for an unsatisfied reuse scenario
and communicate the new design with interface descriptions
and a description of required implementation changes. Fi-
nally, students should describe how the redesign improves
the reusability based on applied design principles or other
arguments. The homework was designed to be open-ended to
allow students to freely explore the reusability of the given
module based on their interests and domain expertise.

Experience: In the end-of-semester survey, students overall
liked the homework (e.g., “Very good. Required much more
thought about the reuse and how it works in practice.”).
Three students mentioned that “the instruction was very open-
ended”, suggesting that some students prefer more concrete
instructions rather than an open-ended format.

In the graded submissions, most students demonstrated
sufficient accomplishment of the learning objectives. The most
common mistakes were related to the precise description of
reuse scenarios (35 % of submissions), and partially lacking
description of semantics in the interfaces (6 % of submissions).

C. HW3 - Design for Scalability

The third homework was designed to provide students
with design generation (LO GJ), communication (LO C), and
evaluation (LO E) skills related to scalability. Based on the
case study of the project, students should specify scalability
requirements, make design decisions (e.g, what data to store,
what storage model to use, what type of scaling to use, how
to distribute the data, which data to cache), model them using
component diagrams, and evaluate the designs.

Experience: In the end-of-semester survey all students liked
the homework (e.g., “It was a good balance between the time
spend and learning outcome”).

In the graded submissions, almost all students demonstrated
sufficient accomplishment of the learning objectives. Common
mistakes were mostly minor, such as the use of generic rather
than domain-specific component names, insufficient justifica-
tions of design decisions, and unrealistic demand estimations.

VII. OPEN CHALLENGES OF TEACHING DESIGN

The main goal of this course was to teach students how
to design large-scale software systems by fostering an engi-
neering mindset and teaching design as an activity. Overall,
students struggled most with learning objectives [LO G| [LO C]
and As all three LOs are at the highest cognitive
level of Bloom’s revised taxonomy [1]] (Creating), they are
particularly challenging to teach effectively. In this section,
we discuss the concrete challenges we observed and suggest
ideas to overcome them in future courses.

A. Generating Multiple Viable Alternatives

As mentioned in [Section V-E| in milestone reports, students

struggled with generating multiple viable alternative design
options (LO G). We observed similar trends in both exams
(mid-term and final exam), in which we asked students to
describe at least two viable design options for a design
problem, evaluate them, and discuss trade-offs between the
two options. In both exams, especially in the mid-term, many
students presented one viable option and one straw-man option
that was a deliberate degradation of their other option.

As generating multiple viable design options is an important
software design skill [72], we see this as an important chal-
lenge when teaching design. While students’ ability to discuss
alternatives noticeably improved throughout the course, we
believe providing more dedicated instruction on design gener-
ation is still an open challenge. Potential improvements could
teach more design generation and brainstorming techniques
throughout the course paired with exercises of generating as
many viable ideas as possible to give students more practice
and spaced repetition. Furthermore, as students asked for
“more concrete tactics” to design systems, a curated list
of more specific design recipes, cautiously annotated with
limitations of their applicability, could help students learn the
generation of more design options.

Lesson Learned 9 (Multiple Viable Alternatives) LO G

Many students in this course struggled with describing

multiple, viable design alternatives.

o Include multiple individual homeworks, recitations, and
in-class exercises for students to practice generating mul-
tiple design alternatives.

e Teach more concrete guidelines on how to generate
multiple viable design alternatives.

B. Design Communication via Appropriate Abstractions

As mentioned in [Section V-E| in milestone reports, students
struggled with identifying appropriate abstractions to com-
municate the essential aspects of their design (LO_C). We
observed similar trends in both exams, in which we asked



students to communicate designs using component diagrams,
interface diagrams, and sequence diagrams.

In the mid-term exam, students struggled most severely
with interface descriptions and component diagrams. Only
58 % of submissions demonstrated sufficient accomplishment
of the learning objective (6 % did not include an answer to the
question, 12 % did not describe interfaces using an appropriate
format, and 24 % lacked descriptions of semantics). Interface
descriptions improved in the final exam with 82 % of submis-
sions demonstrating sufficient accomplishment of the learning
objective. The improvement is most likely due to students hav-
ing had more practice with interface descriptions in the project
and Therefore, we believe adding additional
homework to practice interface descriptions in the first half of
the semester would help students. The additional homework
workload might be offset via[Lesson Learned 7] Common mis-
takes for component diagrams included unclear responsibility
assignments, missing arrows, and missing connection labels.
Mid-term submissions included more severe cases of diagrams
being too ambiguous to appropriately convey design choices,
suggesting some growth. Furthermore, in both exams, some
diagrams were inconsistent (i.e., design choices communicated
in different models contradicted each other).

Based on these observations, we identified that teaching
the identification of appropriate abstraction to model the most
essential aspects of design is still an open challenge. Potential
improvements could use interleaving [25] of different model
types to train students to identify which aspects of a design are
best represented using which type of model. Many exercises in
modeling different design aspects throughout the course could
give students more practice and spaced repetition.

Lesson Learned 10 (Communicate Abstractions) LO C

Many students in this course struggled with communi-
cating design options via appropriate abstractions.

o Include multiple opportunities for students to practice
interface descriptions and component diagrams in indi-
vidual homeworks, recitations, and in-class exercises.

« Include guidelines and exercises on selecting abstractions
that communicate the essential aspects of a given design.

C. Cross-Team Design Debate

One major challenge during the multi-team project was
how to design the system in a way that the implementation
effort of each service is roughly equal (LO MT). Three teams
devised a design that would assign major responsibilities to the
central database, whose team was largely absent during these
discussions. Understandably, the database team was opposed
to taking on a higher workload. Faced with this conflict in a
situation in which the three other teams invested considerable
effort into a design that was not going to get approved by
the other team, a heated discussion took place on Slack. To
lead students toward a more constructive resolution, we recom-
mended an in-person meeting. With instructors only passively
observing, the teams self-organized a collaborative discussion

of potential design options and evaluated them across self-
identified dimensions (code modifications needed, interface
complexity, extensibility, and workload balance). Based on
their evaluations, teams then voted for their preferred option
and democratically reached a reasonable consensus.

While this discussion initially resulted from frustrations
and disagreements between teams, it provided one of the
best learning opportunities to experience the complexity of
real-world design considerations [[68| |73]]. During this meet-
ing, students demonstrated excellent application of advanced
software design skills, such as trade-off evaluation, design
communication, iterative refinement, and a deep understanding
of the non-technical implications of their decisions, skills that
we did not observe in the students before. We believe this
discussion particularly helped students grow and integrate all
major design skills more than they would have otherwise.

Therefore, we recommend explicitly integrating more op-
portunities for student teams to collectively debate cross-team
decisions. While we allocated one lecture at the beginning
of for this activity, due to most students of the
database team not attending, and students having had little
time to generate design alternatives before this discussion,
it was less productive than the debate following the heated
Slack discussion. A challenge in integrating cross-team de-
bates is to identify the right balance between leaving enough
opportunities for constructive disagreements between teams to
encourage debates while moderating the discussions enough
to ensure that students still have a positive experience.

Lesson Learned 11 (Design Debates) LO MT

Students gained the most substantial practice with multi-
team software design activities during an unplanned
cross-team design debate.

« Include multiple opportunities for teams to debate cross-
team design decisions during recitations or lectures.

« Embrace (constructive) disagreements between teams as
an opportunity to practice group decision-making.

o While avoiding too much interference with student auton-
omy, ensure that disagreements are resolved peacefully.

VIII. CONCLUSIONS & FUTURE WORK

In this paper, we presented the design of a novel course on
designing large-scale software systems via the GCE-paradigm
using real-world case studies, constructivism, and a multi-team
project. Our experience motivates future work that empirically
measures the effectiveness of these approaches on software
design education, scales the course to a larger number of
students, and replicates this experience at other universities.

IX. DATA AVAILABILITY

To allow other instructors to adopt or improve our course
design, we have made all teaching materials publicly available
here: https://cmu-swdesign.github.io/. Non-aggregate data on
student submissions is not shared to adhere to the highest
privacy standards.


https://cmu-swdesign.github.io/

[1]

[5]

[6]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

ACM Committee for Computing Education in Community Col-
leges (CCECC). 2023. Bloom’s for Computing: Enhancing Bloom’s
Revised Taxonomy with Verbs for Computing Disciplines. 1SBN:
9798400707636. DOI: 110.1145/3587276!

B. Ahmeti, M. Linder, R. Groner, and R. Wohlrab. 2024. Architecture
Decision Records in Practice: An Action Research Study. In Software
Architecture, 333-349. DOI: |10.1007/978-3-031-70797-1_22.

D. Akdur. 2022. Analysis of Software Engineering Skills Gap in the
Industry. ACM Trans. Comput. Educ., 23, 1, Article 16. DOI: |10.1145/
3567837.

J. Armarego. 2002. Advanced Software Design: a Case in Problem-
based Learning. In Conference on Software Engineering Education and
Training (CSEE&T °02), 44-54. pot: 10.1109/CSEE.2002.995197.
N. Assyne, H. Ghanbari, and M. Pulkkinen. 2022. The state of research
on software engineering competencies: A systematic mapping study.
Journal of Systems and Software, 185, 111183. DOI: 10.1016/j.]ss.
2021.111183.

S. O. Bada and S. Olusegun. 2015. Constructivism Learning Theory: A
Paradigm for Teaching and Learning. Journal of Research & Method
in Education (IOSR-JRME), 5, 6, 66-70. https://iosrjournals.org/iosr-
jrme/papers/Vol-5%20Issue-6/Version- 1/105616670.pdf,

A. Baker and A. van der Hoek. 2009. An Experience Report on
the Design and Delivery of Two New Software Design Courses. In
Technical Symposium on Computer Science Education (SIGCSE ’09),
519-523. DoI: [10.1145/1508865.1509045.

A. Basiri, L. Hochstein, N. Jones, and H. Tucker. 2019. Automating
Chaos Experiments in Production. In International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP
’19), 31-40. por: |10.1109/ICSE-SEIP.2019.00012.

A. Begel, N. Nagappan, C. Poile, and L. Layman. 2009. Coordination
in Large-Scale Software Teams. In ICSE Workshop on Cooperative
and Human Aspects on Software Engineering (CHASE ’09), 1-7. DOI:
10.1109/CHASE.2009.5071401.

A. Begel and B. Simon. 2008. Novice Software Developers, All Over
Again. In International Workshop on Computing Education Research
(ICER °08), 3-14. poI: |10.1145/1404520.1404522.

M. L. Board. 1999. Mars Climate Orbiter Mishap Investigation Board
Phase I Report November 10, 1999. (1999). https://llis.nasa.gov/
1lis_lib/pdf/1009464mainl_0641-mr.pdf.

C. C. Bonwell and J. A. Eison. 1991. Active Learning: Creating Excite-
ment in theClassroom. 1991 ASHE-ERIC Higher EducationReports.
ISBN: 1878380087. https://eric.ed.gov/?1id=ED336049.

T. Carleton and L. Leifer. 2009. Stanford’s ME310 Course as an
Evolution of Engineering Design. In CIRP Design Conference —
Competitive Design. http://hdl.handle.net/1826/3648|

D. Carrington and S.-K. Kim. 2003. Teaching Software Design with
Open Source Software. In Frontiers in Education (FIE *03). Volume 3,
S1C-9. por: [10.1109/FIE.2003.1265910.

C. Y. Chong, E. Kang, and M. Shaw. 2023. Open Design Case Study
- A Crowdsourcing Effort to Curate Software Design Case Studies.
In International Conference on Software Engineering: Software Engi-
neering Education and Training (ICSE-SEET °23), 23-28. poI: 10.
1109/1CSE-SEET58685.2023.00008.

T. Clear, S. Beecham, J. Barr, M. Daniels, R. McDermott, M. Oud-
shoorn, A. Savickaite, and J. Noll. 2015. Challenges and Recommen-
dations for the Design and Conduct of Global Software Engineering
Courses: A Systematic Review. In ITiCSE on Working Group Reports
(ITICSE-WGR ’15), 1-39. DoI: |10.1145/2858796.2858797.

D. Coppit. 2006. Implementing Large Projects in Software Engineering
Courses. Computer Science Education, 16, 1, 53-73. DOI: |10.1080/
08993400600600443.

D. Coppit and J. M. Haddox-Schatz. 2005. Large Team Projects in
Software Engineering Courses. In Technical Symposium on Computer
Science Education (SIGCSE °05), 137-141. pol: [10.1145/1047344.
1047400!

N. Cross. 1982. Designerly ways of knowing. Design Studies, 3,
4, 221-227. Special Issue Design Education. DOI: [10.1016/0142 -
694X(82)90040-0.

D. Damian, A. Hadwin, and B. Al-Ani. 2006. An Experiment on
Teaching Coordination in a Globally Distributed Software Engineering
Class. In International Conference on Software Engineering (ICSE
’06), 685-690. DOI: |10.1145/1134285.1134391,

[21]

(22]

[23]
[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

(39]

[40]

[41]

[42]

L. Deslauriers, L. S. McCarty, K. Miller, K. Callaghan, and G. Kestin.
2019. Measuring actual learning versus feeling of learning in response
to being actively engaged in the classroom. Proceedings of the National
Academy of Sciences, 116, 39, 19251-19257. pot: [10.1073/pnas.
1821936116,

A. Eckerdal, R. McCartney, J. E. Mostrom, M. Ratcliffe, and C. Zander.
2006. Can Graduating Students Design Software Systems? In Technical
Symposium on Computer Science Education (SIGCSE ’06), 403-407.
DOI: 10.1145/1121341.1121468.

G. Fairbanks. 2010. Just Enough Software Architecture: A Risk-Driven
Approach. 1SBN: 9780984618101.

G. Fairbanks. 2023. Software Architecture is a Set of Abstractions.
IEEE Software, 40, 4, 110-113. po1: 10.1109/MS.2023.3269675.

J. Firth, I. Rivers, and J. Boyle. 2021. A systematic review of
interleaving as a concept learning strategy. Review of Education, 9,
2, 642-684. DOI: 10.1002/rev3.3266.

K. Fowler, M. Windschitl, and J. Richards. 2019. Exit Tickets. The
Science Teacher, 86, 8, 18-26. DoI: 10 . 1080 /00368555 . 2019 .
12293416,

S. Freeman, S. L. Eddy, M. McDonough, M. K. Smith, N. Okoroafor,
H. Jordt, and M. P. Wenderoth. 2014. Active learning increases student
performance in science, engineering, and mathematics. Proceedings of
the National Academy of Sciences, 111, 23, 8410-8415. pO1: 10.1073/
pnas.1319030111.

M. Galster and S. Angelov. 2016. What makes teaching software archi-
tecture difficult? In International Conference on Software Engineering
Companion (ICSE °16), 356-359. DoI: 10.1145/2889160.2889187.
K. Garg and V. Varma. 2007. A Study of the Effectiveness of Case
Study Approach in Software Engineering Education. In Conference on
Software Engineering Education and Training (CSEE&T °07), 309—
316. por: 10.1109/CSEET.2007.8.

D. Garlan, R. Allen, and J. Ockerbloom. 1995. Architectural Mismatch:
Why Reuse is so Hard. IEEE Software, 12, 6, 17-26. DOL: [10.1109/
52.469757.

D. Garlan, M. Shaw, C. Okasaki, C. M. Scott, and R. F. Swonger. 1992.
Experience with a Course on Architectures for Software Systems. In
Software Engineering Education, 23—43. DOTI: 10.1007/3-540-55963-
9_38.

V. Garousi, G. Giray, E. Tiiziin, C. Catal, and M. Felderer. 2019.
Aligning software engineering education with industrial needs: A meta-
analysis. Journal of Systems and Software, 156, 65-83. DOI: 10.1016/
j.jss.2019.06.044.

C. Ghezzi and D. Mandrioli. 2006. The Challenges of Software
Engineering Education. In Software Engineering Education in the
Modern Age, 115-127. pOI: |10.1007/11949374_8,

R. S. Hansen. 2006. Benefits and Problems With Student Teams:
Suggestions for Improving Team Projects. Journal of Education for
Business, 82, 1, 11-19. por: 10.3200/JOEB.82.1.11-19.

Q. Hao, B. Barnes, E. Wright, and E. Kim. 2018. Effects of Ac-
tive Learning Environments and Instructional Methods in Computer
Science Education. In Technical Symposium on Computer Science
Education (SIGCSE °18), 934-939. por: 10.1145/3159450.3159451.
S. Hartikainen, H. Rintala, L. Pylvids, and P. Nokelainen. 2019.
The Concept of Active Learning and the Measurement of Learning
Outcomes: A Review of Research in Engineering Higher Education.
Education Sciences, 9, 4. DOI: 10.3390/educsci9040276.

R. Hjelsvold and D. Mishra. 2019. Exploring and Expanding GSE
Education with Open Source Software Development. ACM Trans.
Comput. Educ., 19, 2, Article 12. DOI: |10.1145/3230012.

C. Hu. 2013. The nature of software design and its teaching: an
exposition. ACM Inroads, 4,2, 62-72. DOI:|10.1145/2465085.2465103|
M. Jackson. 1995. The World and the Machine. In International
Conference on Software Engineering (ICSE ’95), 283-292. poTI: 10.
1145/225014.225041.

S. Jarzabek. 2013. Teaching Advanced Software Design in Team-Based
Project Course. In International Conference on Software Engineering
Education and Training (CSEE&T ’13), 31-40. pol: 10.1109/CSEET.
2013.6595234.

C. W. Johnson and I. Barnes. 2005. Redesigning the Intermediate
Course in Software Design. In Australasian Conference on Computing
Education - Volume 42 (ACE °05), 249-258. https://crpit.scem .
westernsydney.edu.au/confpapers/CRPITV42Johnson.pdf,

R. Jolak, A. Wortmann, M. Chaudron, and B. Rumpe. 2018. Does
Distance Still Matter? Revisiting Collaborative Distributed Software


https://doi.org/10.1145/3587276
https://doi.org/10.1007/978-3-031-70797-1_22
https://doi.org/10.1145/3567837
https://doi.org/10.1145/3567837
https://doi.org/10.1109/CSEE.2002.995197
https://doi.org/10.1016/j.jss.2021.111183
https://doi.org/10.1016/j.jss.2021.111183
https://iosrjournals.org/iosr-jrme/papers/Vol-5%20Issue-6/Version-1/I05616670.pdf
https://iosrjournals.org/iosr-jrme/papers/Vol-5%20Issue-6/Version-1/I05616670.pdf
https://doi.org/10.1145/1508865.1509045
https://doi.org/10.1109/ICSE-SEIP.2019.00012
https://doi.org/10.1109/CHASE.2009.5071401
https://doi.org/10.1145/1404520.1404522
https://llis.nasa.gov/llis_lib/pdf/1009464main1_0641-mr.pdf
https://llis.nasa.gov/llis_lib/pdf/1009464main1_0641-mr.pdf
https://eric.ed.gov/?id=ED336049
http://hdl.handle.net/1826/3648
https://doi.org/10.1109/FIE.2003.1265910
https://doi.org/10.1109/ICSE-SEET58685.2023.00008
https://doi.org/10.1109/ICSE-SEET58685.2023.00008
https://doi.org/10.1145/2858796.2858797
https://doi.org/10.1080/08993400600600443
https://doi.org/10.1080/08993400600600443
https://doi.org/10.1145/1047344.1047400
https://doi.org/10.1145/1047344.1047400
https://doi.org/10.1016/0142-694X(82)90040-0
https://doi.org/10.1016/0142-694X(82)90040-0
https://doi.org/10.1145/1134285.1134391
https://doi.org/10.1073/pnas.1821936116
https://doi.org/10.1073/pnas.1821936116
https://doi.org/10.1145/1121341.1121468
https://doi.org/10.1109/MS.2023.3269675
https://doi.org/10.1002/rev3.3266
https://doi.org/10.1080/00368555.2019.12293416
https://doi.org/10.1080/00368555.2019.12293416
https://doi.org/10.1073/pnas.1319030111
https://doi.org/10.1073/pnas.1319030111
https://doi.org/10.1145/2889160.2889187
https://doi.org/10.1109/CSEET.2007.8
https://doi.org/10.1109/52.469757
https://doi.org/10.1109/52.469757
https://doi.org/10.1007/3-540-55963-9_38
https://doi.org/10.1007/3-540-55963-9_38
https://doi.org/10.1016/j.jss.2019.06.044
https://doi.org/10.1016/j.jss.2019.06.044
https://doi.org/10.1007/11949374_8
https://doi.org/10.3200/JOEB.82.1.11-19
https://doi.org/10.1145/3159450.3159451
https://doi.org/10.3390/educsci9040276
https://doi.org/10.1145/3230012
https://doi.org/10.1145/2465085.2465103
https://doi.org/10.1145/225014.225041
https://doi.org/10.1145/225014.225041
https://doi.org/10.1109/CSEET.2013.6595234
https://doi.org/10.1109/CSEET.2013.6595234
https://crpit.scem.westernsydney.edu.au/confpapers/CRPITV42Johnson.pdf
https://crpit.scem.westernsydney.edu.au/confpapers/CRPITV42Johnson.pdf

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

Design. IEEE Software, 35, 6, 40-47. por1: 10.1109/MS.2018.
290100920.

D. Kahneman. 2003. Maps of Bounded Rationality: Psychology for
Behavioral Economics. American Economic Review, 93, 5, 1449-1475.
DOI: [10.1257/000282803322655392.

S. H. K. Kang. 2016. Spaced Repetition Promotes Efficient and
Effective Learning: Policy Implications for Instruction. Policy Insights
from the Behavioral and Brain Sciences, 3, 1, 12-19. por: |10.1177/
2372732215624708.

C. F. Kemerer and M. C. Paulk. 2009. The Impact of Design and Code
Reviews on Software Quality: An Empirical Study Based on PSP Data.
IEEE Transactions on Software Engineering (TSE), 35, 4, 534-550.
DoI: [10.1109/TSE.2009.27.

A. N. Kumar, R. K. Raj, S. G. Aly, M. D. Anderson, B. A. Becker,
R. L. Blumenthal, E. Eaton, S. L. Epstein, M. Goldweber, P. Jalote,
D. Lea, M. Oudshoorn, M. Pias, S. Reiser, C. Servin, R. Simha, T.
Winters, and Q. Xiang. 2024. Computer Science Curricula 2023. 1SBN:
9798400710339. DOTI: 110.1145/3664191.

Z.S. Li, N. N. Arony, K. Devathasan, and D. Damian. 2023. “Software
is the Easy Part of Software Engineering” — Lessons and Experiences
from A Large-Scale, Multi-Team Capstone Course. In International
Conference on Software Engineering: Software Engineering Education
and Training (ICSE-SEET °’23), 223-234. por: |10. 1109 /ICSE -
SEET58685.2023.00027.

J. T. Liang, M. Arab, M. Ko, A. J. Ko, and T. D. LaToza. 2023. A
Qualitative Study on the Implementation Design Decisions of Develop-
ers. In International Conference on Software Engineering (ICSE ’23),
435-447. pot: [10.1109/ICSE48619.2023.00047.

J.-L. Lions, L. Luebeck, J.-L. Fauquembergue, G. Kahn, W. Kubbat,
S. Levedag, L. Mazzini, D. Merle, and C. O’Halloran. 1996. Ariane
5 flight 501 failure report by the inquiry board. (1996). https://
esamultimedia.esa.int/docs/esa-x- 1819eng.pdf.

C. Loftus, L. Thomas, and C. Zander. 2011. Can Graduating Students
Design: Revisited. In Technical Symposium on Computer Science
Education (SIGCSE °11), 105-110. pot: 10.1145/1953163.1953199.
M. Luukkainen, A. Vihavainen, and T. Vikberg. 2012. Three Years of
Design-based Research to Reform a Software Engineering Curriculum.
In Annual Conference on Information Technology Education (SIGITE
’12), 209-214. por: |10.1145/2380552.2380613.

T. Mannisto, J. Savolainen, and V. Myllarniemi. 2008. Teaching
Software Architecture Design. In Working Conference on Software
Architecture (WICSA °08), 117-124. por: 10.1109/WICSA.2008.34,
C. Matthies, J. Huegle, T. Diirschmid, and R. Teusner. 2019. Attitudes,
Beliefs, and Development Data Concerning Agile Software Develop-
ment Practices. In International Conference on Software Engineering:
Software Engineering Education and Training Track (ICSE-SEET ’19),
158-169. poI: [10.1109/ICSE-SEET.2019.00025.

C. Matthies, T. Kowark, and M. Uflacker. 2016. Teaching Agile the
Agile Way — Employing Self-Organizing Teams in a University
Software Engineering Course. In ASEE International Forum. DOL: |10.
18260/1-2--27259.

M. E. McMurtrey, J. P. Downey, S. M. Zeltmann, and W. H. Fried-
man. 2008. Critical Skill Sets of Entry-Level IT Professionals: An
Empirical Examination of Perceptions from Field Personnel. Journal
of Information Technology Education: Research, 7, 1, 101-120. DOI:
10.28945/181.

G. Meszaros. 2007. xUnit Test Patterns: Refactoring Test Code. ISBN:
9780131495050. http://xunitpatterns.com/Test%20Double.html.

R. Negretti. 2012. Metacognition in Student Academic Writing: A Lon-
gitudinal Study of Metacognitive Awareness and Its Relation to Task
Perception, Self-Regulation, and Evaluation of Performance. Written
Communication, 29, 2, 142-179. po1: 10.1177/0741088312438529.
S. Ouhbi and N. Pombo. 2020. Software Engineering Education: Chal-
lenges and Perspectives. In Global Engineering Education Conference
(EDUCON ’20), 202-209. potr: [10. 1109 / EDUCON45650 . 2020 .
9125353.

W. L. Pantoja Yépez, J. A. Hurtado Alegria, A. Bandi, and A. W.
Kiwelekar. 2023. Training software architects suiting software industry
needs: A literature review. Education and Information Technologies.
DOI: |10.1007/s10639-023-12149-x.

M. Petre. 2009. Insights from Expert Software Design Practice. In Joint
Meeting of the European Software Engineering Conference and the
Symposium on The Foundations of Software Engineering (ESEC/FSE
’09), 233-242. pol: |10.1145/1595696.1595731.

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

(771

(78]

(791

[80]

[81]

R. Plosch, J. Briuer, C. Korner, and M. Saft. 2016. MUSE: A
Framework for Measuring Object-Oriented Design Quality. Journal
of Object Technology, 15, 4, 2:1-29. pOI: 10.5381/jot.2016.15.4.a2.
C. Pretorius, M. Razavian, K. Eling, and F. Langerak. 2024. When
rationality meets intuition: A research agenda for software design
decision-making. Journal of Software: Evolution and Process, 36, 9,
€2664. DOI: [10.1002/smr.2664.

A. Radermacher and G. Walia. 2013. Gaps Between Industry Expec-
tations and the Abilities of Graduates. In Technical Symposium on
Computer Science Education (SIGCSE ’13), 525-530. pot: 10.1145/
2445196.2445351.

C. Semerci and V. Batdi. 2015. A Meta-Analysis of Constructivist
Learning Approach on Learners’ Academic Achievements, Retention
and Attitudes. Journal of Education and Training Studies, 3, 2, 171-
180. po1: 10.11114/jets.v3i2.644.

M. Shaw. 2000. Software Engineering Education: A Roadmap. In Con-
ference on The Future of Software Engineering (ICSE °00), 371-380.
DOI: [10.1145/336512.336592.

M. Shaw, J. Herbsleb, and I. Ozkaya. 2005. Deciding What to Design:
Closing a Gap in Software Engineering Education. In International
Conference on Software Engineering (ICSE °05), 607-608. DOTI: |10.
1145/1062455.1062563.

M. Shaw and J. E. Tomayko. 1991. Models for undergraduate project
courses in software engineering. In Software Engineering Education,
33-71. por: 10.1007/BFb0024284.

A. Tang, M. Razavian, B. Paech, and T.-M. Hesse. 2017. Human
Aspects in Software Architecture Decision Making: A Literature
Review. In International Conference on Software Architecture (ICSA
’17), 107-116. por: |10.1109/ICSA.2017.15.

A. Tang, M. H. Tran, J. Han, and H. van Vliet. 2008. Design
Reasoning Improves Software Design Quality. In Quality of Software
Architectures. Models and Architectures, 28—42. DOI: 10.1007/978-3-
540-87879-7_2.

S. Tenhunen, T. Ménnisto, M. Luukkainen, and P. Ihantola. 2023. A
systematic literature review of capstone courses in software engineer-
ing. Information and Software Technology, 159, 107191. po1:/10.1016/
j.infsof.2023.107191.

C. Thevathayan and M. Hamilton. 2017. Imparting Software Engineer-
ing Design Skills. In Australasian Computing Education Conference
(ACE °17), 95-102. poI: [10.1145/3013499.3013511.

D. Tofan, M. Galster, and P. Avgeriou. 2013. Difficulty of Architectural
Decisions — A Survey with Professional Architects. In Software
Architecture, 192-199. DOI: |10.1007/978-3-642-39031-9_17.

H. van Vliet and A. Tang. 2016. Decision making in software architec-
ture. Journal of Systems and Software, 117, 638—-644. DoI: 10.1016/].
jss.2016.01.017.

V. Varma and K. Garg. 2005. Case Studies: The Potential Teaching
Instruments for Software Engineering Education. In International
Conference on Quality Software (QSIC ’05), 279-284. po1: |10.1109/
QSIC.2005.18.

I. Warren. 2005. Teaching Patterns and Software Design. In Aus-
tralasian Conference on Computing Education - Volume 42 (ACE
’05), 39-49. https://crpit. scem. westernsydney . edu . au/confpapers/
CRPITV42Warren.pdf.

B. Wu and A. I. Wang. 2012. A Guideline for Game Development-
Based Learning: A Literature Review. International Journal of Com-
puter Games Technology, 2012, 1, 103710. Do1:110.1155/2012/103710.
S. S. Yau and J. J.-P. Tsai. 1986. A Survey of Software Design
Techniques. Transactions on Software Engineering (TSE), SE-12, 6,
713-721. poI: [10.1109/TSE.1986.6312969.

J. Zhang and J. Li. 2010. Teaching Software Engineering Using Case
Study. In International Conference on Biomedical Engineering and
Computer Science (ICBECS ’10), 1-4. pot: [10.1109/ICBECS.2010.
5462378

L. Zhang, Y. Li, and N. Ge. 2020. Exploration on Theoretical and
Practical Projects of Software Architecture Course. In International
Conference on Computer Science & Education (ICCSE), 391-395.
DOI: [10.1109/ICCSE49874.2020.9201748.

X. Zhang and H. Pham. 2000. An analysis of factors affecting software
reliability. Journal of Systems and Software, 50, 1, 43-56. DOI: 10.
1016/50164-1212(99)00075-8.

C. Ziftci and B. Greenberg. 2023. Improving Design Reviews at
Google. In International Conference on Automated Software Engineer-
ing (ASE °23), 1849-1854. por: 10.1109/ASE56229.2023.00066.


https://doi.org/10.1109/MS.2018.290100920
https://doi.org/10.1109/MS.2018.290100920
https://doi.org/10.1257/000282803322655392
https://doi.org/10.1177/2372732215624708
https://doi.org/10.1177/2372732215624708
https://doi.org/10.1109/TSE.2009.27
https://doi.org/10.1145/3664191
https://doi.org/10.1109/ICSE-SEET58685.2023.00027
https://doi.org/10.1109/ICSE-SEET58685.2023.00027
https://doi.org/10.1109/ICSE48619.2023.00047
https://esamultimedia.esa.int/docs/esa-x-1819eng.pdf
https://esamultimedia.esa.int/docs/esa-x-1819eng.pdf
https://doi.org/10.1145/1953163.1953199
https://doi.org/10.1145/2380552.2380613
https://doi.org/10.1109/WICSA.2008.34
https://doi.org/10.1109/ICSE-SEET.2019.00025
https://doi.org/10.18260/1-2--27259
https://doi.org/10.18260/1-2--27259
https://doi.org/10.28945/181
http://xunitpatterns.com/Test%20Double.html
https://doi.org/10.1177/0741088312438529
https://doi.org/10.1109/EDUCON45650.2020.9125353
https://doi.org/10.1109/EDUCON45650.2020.9125353
https://doi.org/10.1007/s10639-023-12149-x
https://doi.org/10.1145/1595696.1595731
https://doi.org/10.5381/jot.2016.15.4.a2
https://doi.org/10.1002/smr.2664
https://doi.org/10.1145/2445196.2445351
https://doi.org/10.1145/2445196.2445351
https://doi.org/10.11114/jets.v3i2.644
https://doi.org/10.1145/336512.336592
https://doi.org/10.1145/1062455.1062563
https://doi.org/10.1145/1062455.1062563
https://doi.org/10.1007/BFb0024284
https://doi.org/10.1109/ICSA.2017.15
https://doi.org/10.1007/978-3-540-87879-7_2
https://doi.org/10.1007/978-3-540-87879-7_2
https://doi.org/10.1016/j.infsof.2023.107191
https://doi.org/10.1016/j.infsof.2023.107191
https://doi.org/10.1145/3013499.3013511
https://doi.org/10.1007/978-3-642-39031-9_17
https://doi.org/10.1016/j.jss.2016.01.017
https://doi.org/10.1016/j.jss.2016.01.017
https://doi.org/10.1109/QSIC.2005.18
https://doi.org/10.1109/QSIC.2005.18
https://crpit.scem.westernsydney.edu.au/confpapers/CRPITV42Warren.pdf
https://crpit.scem.westernsydney.edu.au/confpapers/CRPITV42Warren.pdf
https://doi.org/10.1155/2012/103710
https://doi.org/10.1109/TSE.1986.6312969
https://doi.org/10.1109/ICBECS.2010.5462378
https://doi.org/10.1109/ICBECS.2010.5462378
https://doi.org/10.1109/ICCSE49874.2020.9201748
https://doi.org/10.1016/S0164-1212(99)00075-8
https://doi.org/10.1016/S0164-1212(99)00075-8
https://doi.org/10.1109/ASE56229.2023.00066

	Introduction
	Related Work
	Software Design Courses
	Multi-Team Courses

	Course Design Overview
	Learning Objectives (LOs)

	Lecture Design
	Teaching Design as an Activity via the GCE-Paradigm
	Real-World Case Studies
	Teaching Software Design Principles using Constructivism

	Multi-Team Project
	Cross-Team Communicator
	Service Interface Description
	Test Double Components
	Milestone Reports
	Assessment of Milestone Report Submissions

	Homework Assignments
	HW1 - Domain and Design Modeling
	HW2 - Design for Reuse
	HW3 - Design for Scalability

	Open Challenges of Teaching Design
	Generating Multiple Viable Alternatives
	Design Communication via Appropriate Abstractions
	Cross-Team Design Debate

	Conclusions & Future Work
	Data Availability

